Spaces:
Runtime error
Runtime error
File size: 6,763 Bytes
183f457 add175f 1dc8f44 3e96f52 1dc8f44 183f457 add175f 183f457 1dc8f44 183f457 1dc8f44 183f457 1dc8f44 183f457 1dc8f44 183f457 1dc8f44 183f457 6bece0b 183f457 6bece0b 183f457 c7e5b16 183f457 aeedefa 1dc8f44 183f457 ec0930e 183f457 a5967d8 183f457 1d208b0 183f457 c7e5b16 183f457 c7e5b16 1dc8f44 183f457 c7e5b16 1dc8f44 183f457 c7e5b16 1dc8f44 183f457 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import torch
import requests
from PIL import Image
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
from lavis.common.gradcam import getAttMap
from lavis.models import load_model_and_preprocess
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, AutoModelForSeq2SeqLM
import gradio as gr
import torch, gc
from gpuinfo import GPUInfo
import psutil
import time
def prepare_data(image, question):
gc.collect()
torch.cuda.empty_cache()
image = vis_processors["eval"](image).unsqueeze(0).to(device)
question = txt_processors["eval"](question)
samples = {"image": image, "text_input": [question]}
return samples
def running_inf(time_start):
time_end = time.time()
time_diff = time_end - time_start
memory = psutil.virtual_memory()
gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
system_info = f"""
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
*Processing time: {time_diff:.5} seconds.*
*GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.*
"""
return system_info
def gradcam_attention(image, question):
dst_w = 720
samples = prepare_data(image, question)
samples = model.forward_itm(samples=samples)
w, h = image.size
scaling_factor = dst_w / w
resized_img = image.resize((int(w * scaling_factor), int(h * scaling_factor)))
norm_img = np.float32(resized_img) / 255
gradcam = samples['gradcams'].reshape(24,24)
avg_gradcam = getAttMap(norm_img, gradcam, blur=True)
return (avg_gradcam * 255).astype(np.uint8)
def generate_cap(image, question, cap_number):
time_start = time.time()
samples = prepare_data(image, question)
samples = model.forward_itm(samples=samples)
samples = model.forward_cap(samples=samples, num_captions=cap_number, num_patches=5)
return pd.DataFrame({'Caption': samples['captions'][0][:cap_number]}), running_inf(time_start)
def postprocess(text):
for i, ans in enumerate(text):
for j, w in enumerate(ans):
if w == '.' or w == '\n':
ans = ans[:j].lower()
break
return ans
def generate_answer(image, question):
time_start = time.time()
samples = prepare_data(image, question)
samples = model.forward_itm(samples=samples)
samples = model.forward_cap(samples=samples, num_captions=5, num_patches=5)
samples = model.forward_qa_generation(samples)
Img2Prompt = model.prompts_construction(samples)
Img2Prompt_input = tokenizer(Img2Prompt, padding='longest', truncation=True, return_tensors="pt").to(device)
outputs = llm_model.generate(input_ids=Img2Prompt_input.input_ids,
attention_mask=Img2Prompt_input.attention_mask,
max_length=20+len(Img2Prompt_input.input_ids[0]),
return_dict_in_generate=True,
output_scores=True
)
pred_answer = tokenizer.batch_decode(outputs.sequences[:, len(Img2Prompt_input.input_ids[0]):])
pred_answer = postprocess(pred_answer)
print(pred_answer, type(pred_answer))
return pred_answer, running_inf(time_start)
# setup device to use
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
def load_model(model_selection):
model = AutoModelForCausalLM.from_pretrained(model_selection)
tokenizer = AutoTokenizer.from_pretrained(model_selection, use_fast=False)
return model,tokenizer
# Choose LLM to use
# weights for OPT-350M/OPT-6.7B/OPT-13B/OPT-30B/OPT-66B will download automatically
print("Loading Large Language Model (LLM)...")
llm_model, tokenizer = load_model('facebook/opt-350m') # ~700MB (FP16)
llm_model.to(device)
model, vis_processors, txt_processors = load_model_and_preprocess(name="img2prompt_vqa", model_type="base", is_eval=True, device=device)
# ---- Gradio Layout -----
title = "From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language Models"
df_init = pd.DataFrame(columns=['Caption'])
raw_image = gr.Image(label='Input image', type="pil")
question = gr.Textbox(label="Input question", lines=1, interactive=True)
text_output = gr.Textbox(label="Output Answer")
demo = gr.Blocks(title=title)
demo.encrypt = False
cap_df = gr.DataFrame(value=df_init, label="Caption dataframe", row_count=(0, "dynamic"), max_rows = 20, wrap=True, overflow_row_behaviour='paginate')
memory = psutil.virtual_memory()
system_info = gr.Markdown(f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*")
with demo:
with gr.Row():
gr.Markdown(f'''
<div>
<h1 style='text-align: center'>From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language Models</h1>
</div>
<div align="center">
<h3> What you can do with this space </h3>
<h4> 1. Upload your image and fill your question </h4>
<h4> 2. Creating caption from your image </h4>
<h4> 3. Answering your question based on uploaded image </h4>
</div>
''')
examples = gr.Examples(examples=
[["image1.jpg", "What type of bird is this?"],
["image2.jpg", "What type of bike is on the ground?"],
["image3.jpg", "What is the person in the photo wearing?"]],
label="Examples", inputs=[raw_image, question])
with gr.Row():
with gr.Column():
raw_image.render()
with gr.Column():
question.render()
number_cap = gr.Number(precision=0, value=5, label="Selected number of caption you want to generate", interactive=True)
with gr.Row():
with gr.Column():
cap_btn = gr.Button("Generate caption")
cap_btn.click(generate_cap, [raw_image, question, number_cap], [cap_df, system_info])
with gr.Column():
anws_btn = gr.Button("Answer")
anws_btn.click(generate_answer, [raw_image, question], outputs=[text_output, system_info])
with gr.Row():
with gr.Column():
# gradcam_btn = gr.Button("Generate Gradcam")
# gradcam_btn.click(gradcam_attention, [raw_image, question], outputs=[avg_gradcam])
cap_df.render()
with gr.Column():
text_output.render()
system_info.render()
demo.launch(debug=True) |