Spaces:
Sleeping
Sleeping
from pathlib import Path | |
from typing import Any, Optional, Union | |
import torch | |
from safetensors import safe_open | |
from safetensors.torch import save_file | |
from style_bert_vits2.logging import logger | |
def load_safetensors( | |
checkpoint_path: Union[str, Path], | |
model: torch.nn.Module, | |
for_infer: bool = False, | |
) -> tuple[torch.nn.Module, Optional[int]]: | |
""" | |
指定されたパスから safetensors モデルを読み込み、モデルとイテレーションを返す。 | |
Args: | |
checkpoint_path (Union[str, Path]): モデルのチェックポイントファイルのパス | |
model (torch.nn.Module): 読み込む対象のモデル | |
for_infer (bool): 推論用に読み込むかどうかのフラグ | |
Returns: | |
tuple[torch.nn.Module, Optional[int]]: 読み込まれたモデルとイテレーション回数(存在する場合) | |
""" | |
tensors: dict[str, Any] = {} | |
iteration: Optional[int] = None | |
with safe_open(str(checkpoint_path), framework="pt", device="cpu") as f: # type: ignore | |
for key in f.keys(): | |
if key == "iteration": | |
iteration = f.get_tensor(key).item() | |
tensors[key] = f.get_tensor(key) | |
if hasattr(model, "module"): | |
result = model.module.load_state_dict(tensors, strict=False) | |
else: | |
result = model.load_state_dict(tensors, strict=False) | |
for key in result.missing_keys: | |
if key.startswith("enc_q") and for_infer: | |
continue | |
logger.warning(f"Missing key: {key}") | |
for key in result.unexpected_keys: | |
if key == "iteration": | |
continue | |
logger.warning(f"Unexpected key: {key}") | |
if iteration is None: | |
logger.info(f"Loaded '{checkpoint_path}'") | |
else: | |
logger.info(f"Loaded '{checkpoint_path}' (iteration {iteration})") | |
return model, iteration | |
def save_safetensors( | |
model: torch.nn.Module, | |
iteration: int, | |
checkpoint_path: Union[str, Path], | |
is_half: bool = False, | |
for_infer: bool = False, | |
) -> None: | |
""" | |
モデルを safetensors 形式で保存する。 | |
Args: | |
model (torch.nn.Module): 保存するモデル | |
iteration (int): イテレーション回数 | |
checkpoint_path (Union[str, Path]): 保存先のパス | |
is_half (bool): モデルを半精度で保存するかどうかのフラグ | |
for_infer (bool): 推論用に保存するかどうかのフラグ | |
""" | |
if hasattr(model, "module"): | |
state_dict = model.module.state_dict() | |
else: | |
state_dict = model.state_dict() | |
keys = [] | |
for k in state_dict: | |
if "enc_q" in k and for_infer: | |
continue | |
keys.append(k) | |
new_dict = ( | |
{k: state_dict[k].half() for k in keys} | |
if is_half | |
else {k: state_dict[k] for k in keys} | |
) | |
new_dict["iteration"] = torch.LongTensor([iteration]) | |
logger.info(f"Saved safetensors to {checkpoint_path}") | |
save_file(new_dict, checkpoint_path) | |