Spaces:
Running
Running
from typing import Any, Optional, Union, cast | |
import torch | |
from numpy.typing import NDArray | |
from style_bert_vits2.constants import Languages | |
from style_bert_vits2.logging import logger | |
from style_bert_vits2.models import commons, utils | |
from style_bert_vits2.models.hyper_parameters import HyperParameters | |
from style_bert_vits2.models.models import SynthesizerTrn | |
from style_bert_vits2.models.models_jp_extra import ( | |
SynthesizerTrn as SynthesizerTrnJPExtra, | |
) | |
from style_bert_vits2.nlp import ( | |
clean_text, | |
cleaned_text_to_sequence, | |
extract_bert_feature, | |
) | |
from style_bert_vits2.nlp.symbols import SYMBOLS | |
def get_net_g(model_path: str, version: str, device: str, hps: HyperParameters): | |
if version.endswith("JP-Extra"): | |
logger.info("Using JP-Extra model") | |
net_g = SynthesizerTrnJPExtra( | |
n_vocab=len(SYMBOLS), | |
spec_channels=hps.data.filter_length // 2 + 1, | |
segment_size=hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
# hps.model 以下のすべての値を引数に渡す | |
use_spk_conditioned_encoder=hps.model.use_spk_conditioned_encoder, | |
use_noise_scaled_mas=hps.model.use_noise_scaled_mas, | |
use_mel_posterior_encoder=hps.model.use_mel_posterior_encoder, | |
use_duration_discriminator=hps.model.use_duration_discriminator, | |
use_wavlm_discriminator=hps.model.use_wavlm_discriminator, | |
inter_channels=hps.model.inter_channels, | |
hidden_channels=hps.model.hidden_channels, | |
filter_channels=hps.model.filter_channels, | |
n_heads=hps.model.n_heads, | |
n_layers=hps.model.n_layers, | |
kernel_size=hps.model.kernel_size, | |
p_dropout=hps.model.p_dropout, | |
resblock=hps.model.resblock, | |
resblock_kernel_sizes=hps.model.resblock_kernel_sizes, | |
resblock_dilation_sizes=hps.model.resblock_dilation_sizes, | |
upsample_rates=hps.model.upsample_rates, | |
upsample_initial_channel=hps.model.upsample_initial_channel, | |
upsample_kernel_sizes=hps.model.upsample_kernel_sizes, | |
n_layers_q=hps.model.n_layers_q, | |
use_spectral_norm=hps.model.use_spectral_norm, | |
gin_channels=hps.model.gin_channels, | |
slm=hps.model.slm, | |
).to(device) | |
else: | |
logger.info("Using normal model") | |
net_g = SynthesizerTrn( | |
n_vocab=len(SYMBOLS), | |
spec_channels=hps.data.filter_length // 2 + 1, | |
segment_size=hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
# hps.model 以下のすべての値を引数に渡す | |
use_spk_conditioned_encoder=hps.model.use_spk_conditioned_encoder, | |
use_noise_scaled_mas=hps.model.use_noise_scaled_mas, | |
use_mel_posterior_encoder=hps.model.use_mel_posterior_encoder, | |
use_duration_discriminator=hps.model.use_duration_discriminator, | |
use_wavlm_discriminator=hps.model.use_wavlm_discriminator, | |
inter_channels=hps.model.inter_channels, | |
hidden_channels=hps.model.hidden_channels, | |
filter_channels=hps.model.filter_channels, | |
n_heads=hps.model.n_heads, | |
n_layers=hps.model.n_layers, | |
kernel_size=hps.model.kernel_size, | |
p_dropout=hps.model.p_dropout, | |
resblock=hps.model.resblock, | |
resblock_kernel_sizes=hps.model.resblock_kernel_sizes, | |
resblock_dilation_sizes=hps.model.resblock_dilation_sizes, | |
upsample_rates=hps.model.upsample_rates, | |
upsample_initial_channel=hps.model.upsample_initial_channel, | |
upsample_kernel_sizes=hps.model.upsample_kernel_sizes, | |
n_layers_q=hps.model.n_layers_q, | |
use_spectral_norm=hps.model.use_spectral_norm, | |
gin_channels=hps.model.gin_channels, | |
slm=hps.model.slm, | |
).to(device) | |
net_g.state_dict() | |
_ = net_g.eval() | |
if model_path.endswith(".pth") or model_path.endswith(".pt"): | |
_ = utils.checkpoints.load_checkpoint( | |
model_path, net_g, None, skip_optimizer=True | |
) | |
elif model_path.endswith(".safetensors"): | |
_ = utils.safetensors.load_safetensors(model_path, net_g, True) | |
else: | |
raise ValueError(f"Unknown model format: {model_path}") | |
return net_g | |
def get_text( | |
text: str, | |
language_str: Languages, | |
hps: HyperParameters, | |
device: str, | |
assist_text: Optional[str] = None, | |
assist_text_weight: float = 0.7, | |
given_phone: Optional[list[str]] = None, | |
given_tone: Optional[list[int]] = None, | |
): | |
use_jp_extra = hps.version.endswith("JP-Extra") | |
# 推論時のみ呼び出されるので、raise_yomi_error は False に設定 | |
norm_text, phone, tone, word2ph = clean_text( | |
text, | |
language_str, | |
use_jp_extra=use_jp_extra, | |
raise_yomi_error=False, | |
) | |
# phone と tone の両方が与えられた場合はそれを使う | |
if given_phone is not None and given_tone is not None: | |
# 指定された phone と指定された tone 両方の長さが一致していなければならない | |
if len(given_phone) != len(given_tone): | |
raise InvalidPhoneError( | |
f"Length of given_phone ({len(given_phone)}) != length of given_tone ({len(given_tone)})" | |
) | |
# 与えられた音素数と pyopenjtalk で生成した読みの音素数が一致しない | |
if len(given_phone) != sum(word2ph): | |
# 日本語の場合、len(given_phone) と sum(word2ph) が一致するように word2ph を適切に調整する | |
# 他の言語は word2ph の調整方法が思いつかないのでエラー | |
if language_str == Languages.JP: | |
from style_bert_vits2.nlp.japanese.g2p import adjust_word2ph | |
word2ph = adjust_word2ph(word2ph, phone, given_phone) | |
# 上記処理により word2ph の合計が given_phone の長さと一致するはず | |
# それでも一致しない場合、大半は読み上げテキストと given_phone が著しく乖離していて調整し切れなかったことを意味する | |
if len(given_phone) != sum(word2ph): | |
raise InvalidPhoneError( | |
f"Length of given_phone ({len(given_phone)}) != sum of word2ph ({sum(word2ph)})" | |
) | |
else: | |
raise InvalidPhoneError( | |
f"Length of given_phone ({len(given_phone)}) != sum of word2ph ({sum(word2ph)})" | |
) | |
phone = given_phone | |
# 生成あるいは指定された phone と指定された tone 両方の長さが一致していなければならない | |
if len(phone) != len(given_tone): | |
raise InvalidToneError( | |
f"Length of phone ({len(phone)}) != length of given_tone ({len(given_tone)})" | |
) | |
tone = given_tone | |
# tone だけが与えられた場合は clean_text() で生成した phone と合わせて使う | |
elif given_tone is not None: | |
# 生成した phone と指定された tone 両方の長さが一致していなければならない | |
if len(phone) != len(given_tone): | |
raise InvalidToneError( | |
f"Length of phone ({len(phone)}) != length of given_tone ({len(given_tone)})" | |
) | |
tone = given_tone | |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | |
if hps.data.add_blank: | |
phone = commons.intersperse(phone, 0) | |
tone = commons.intersperse(tone, 0) | |
language = commons.intersperse(language, 0) | |
for i in range(len(word2ph)): | |
word2ph[i] = word2ph[i] * 2 | |
word2ph[0] += 1 | |
bert_ori = extract_bert_feature( | |
norm_text, | |
word2ph, | |
language_str, | |
device, | |
assist_text, | |
assist_text_weight, | |
) | |
del word2ph | |
assert bert_ori.shape[-1] == len(phone), phone | |
if language_str == Languages.ZH: | |
bert = bert_ori | |
ja_bert = torch.zeros(1024, len(phone)) | |
en_bert = torch.zeros(1024, len(phone)) | |
elif language_str == Languages.JP: | |
bert = torch.zeros(1024, len(phone)) | |
ja_bert = bert_ori | |
en_bert = torch.zeros(1024, len(phone)) | |
elif language_str == Languages.EN: | |
bert = torch.zeros(1024, len(phone)) | |
ja_bert = torch.zeros(1024, len(phone)) | |
en_bert = bert_ori | |
else: | |
raise ValueError("language_str should be ZH, JP or EN") | |
assert bert.shape[-1] == len( | |
phone | |
), f"Bert seq len {bert.shape[-1]} != {len(phone)}" | |
phone = torch.LongTensor(phone) | |
tone = torch.LongTensor(tone) | |
language = torch.LongTensor(language) | |
return bert, ja_bert, en_bert, phone, tone, language | |
def infer( | |
text: str, | |
style_vec: NDArray[Any], | |
sdp_ratio: float, | |
noise_scale: float, | |
noise_scale_w: float, | |
length_scale: float, | |
sid: int, # In the original Bert-VITS2, its speaker_name: str, but here it's id | |
language: Languages, | |
hps: HyperParameters, | |
net_g: Union[SynthesizerTrn, SynthesizerTrnJPExtra], | |
device: str, | |
skip_start: bool = False, | |
skip_end: bool = False, | |
assist_text: Optional[str] = None, | |
assist_text_weight: float = 0.7, | |
given_phone: Optional[list[str]] = None, | |
given_tone: Optional[list[int]] = None, | |
): | |
is_jp_extra = hps.version.endswith("JP-Extra") | |
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text( | |
text, | |
language, | |
hps, | |
device, | |
assist_text=assist_text, | |
assist_text_weight=assist_text_weight, | |
given_phone=given_phone, | |
given_tone=given_tone, | |
) | |
if skip_start: | |
phones = phones[3:] | |
tones = tones[3:] | |
lang_ids = lang_ids[3:] | |
bert = bert[:, 3:] | |
ja_bert = ja_bert[:, 3:] | |
en_bert = en_bert[:, 3:] | |
if skip_end: | |
phones = phones[:-2] | |
tones = tones[:-2] | |
lang_ids = lang_ids[:-2] | |
bert = bert[:, :-2] | |
ja_bert = ja_bert[:, :-2] | |
en_bert = en_bert[:, :-2] | |
with torch.no_grad(): | |
x_tst = phones.to(device).unsqueeze(0) | |
tones = tones.to(device).unsqueeze(0) | |
lang_ids = lang_ids.to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
ja_bert = ja_bert.to(device).unsqueeze(0) | |
en_bert = en_bert.to(device).unsqueeze(0) | |
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) | |
style_vec_tensor = torch.from_numpy(style_vec).to(device).unsqueeze(0) | |
del phones | |
sid_tensor = torch.LongTensor([sid]).to(device) | |
if is_jp_extra: | |
output = cast(SynthesizerTrnJPExtra, net_g).infer( | |
x_tst, | |
x_tst_lengths, | |
sid_tensor, | |
tones, | |
lang_ids, | |
ja_bert, | |
style_vec=style_vec_tensor, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
) | |
else: | |
output = cast(SynthesizerTrn, net_g).infer( | |
x_tst, | |
x_tst_lengths, | |
sid_tensor, | |
tones, | |
lang_ids, | |
bert, | |
ja_bert, | |
en_bert, | |
style_vec=style_vec_tensor, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
) | |
audio = output[0][0, 0].data.cpu().float().numpy() | |
del ( | |
x_tst, | |
tones, | |
lang_ids, | |
bert, | |
x_tst_lengths, | |
sid_tensor, | |
ja_bert, | |
en_bert, | |
style_vec, | |
) # , emo | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
return audio | |
class InvalidPhoneError(ValueError): | |
pass | |
class InvalidToneError(ValueError): | |
pass | |