Spaces:
Sleeping
Sleeping
""" | |
Style-Bert-VITS2 モデルのハイパーパラメータを表す Pydantic モデル。 | |
デフォルト値は configs/config_jp_extra.json 内の定義と概ね同一で、 | |
万が一ロードした config.json に存在しないキーがあった際のフェイルセーフとして適用される。 | |
""" | |
from pathlib import Path | |
from typing import Optional, Union | |
from pydantic import BaseModel, ConfigDict | |
class HyperParametersTrain(BaseModel): | |
log_interval: int = 200 | |
eval_interval: int = 1000 | |
seed: int = 42 | |
epochs: int = 1000 | |
learning_rate: float = 0.0001 | |
betas: tuple[float, float] = (0.8, 0.99) | |
eps: float = 1e-9 | |
batch_size: int = 2 | |
bf16_run: bool = False | |
fp16_run: bool = False | |
lr_decay: float = 0.99996 | |
segment_size: int = 16384 | |
init_lr_ratio: int = 1 | |
warmup_epochs: int = 0 | |
c_mel: int = 45 | |
c_kl: float = 1.0 | |
c_commit: int = 100 | |
skip_optimizer: bool = False | |
freeze_ZH_bert: bool = False | |
freeze_JP_bert: bool = False | |
freeze_EN_bert: bool = False | |
freeze_emo: bool = False | |
freeze_style: bool = False | |
freeze_decoder: bool = False | |
class HyperParametersData(BaseModel): | |
use_jp_extra: bool = True | |
training_files: str = "Data/Dummy/train.list" | |
validation_files: str = "Data/Dummy/val.list" | |
max_wav_value: float = 32768.0 | |
sampling_rate: int = 44100 | |
filter_length: int = 2048 | |
hop_length: int = 512 | |
win_length: int = 2048 | |
n_mel_channels: int = 128 | |
mel_fmin: float = 0.0 | |
mel_fmax: Optional[float] = None | |
add_blank: bool = True | |
n_speakers: int = 1 | |
cleaned_text: bool = True | |
spk2id: dict[str, int] = { | |
"Dummy": 0, | |
} | |
num_styles: int = 1 | |
style2id: dict[str, int] = { | |
"Neutral": 0, | |
} | |
class HyperParametersModelSLM(BaseModel): | |
model: str = "./slm/wavlm-base-plus" | |
sr: int = 16000 | |
hidden: int = 768 | |
nlayers: int = 13 | |
initial_channel: int = 64 | |
class HyperParametersModel(BaseModel): | |
use_spk_conditioned_encoder: bool = True | |
use_noise_scaled_mas: bool = True | |
use_mel_posterior_encoder: bool = False | |
use_duration_discriminator: bool = False | |
use_wavlm_discriminator: bool = True | |
inter_channels: int = 192 | |
hidden_channels: int = 192 | |
filter_channels: int = 768 | |
n_heads: int = 2 | |
n_layers: int = 6 | |
kernel_size: int = 3 | |
p_dropout: float = 0.1 | |
resblock: str = "1" | |
resblock_kernel_sizes: list[int] = [3, 7, 11] | |
resblock_dilation_sizes: list[list[int]] = [ | |
[1, 3, 5], | |
[1, 3, 5], | |
[1, 3, 5], | |
] | |
upsample_rates: list[int] = [8, 8, 2, 2, 2] | |
upsample_initial_channel: int = 512 | |
upsample_kernel_sizes: list[int] = [16, 16, 8, 2, 2] | |
n_layers_q: int = 3 | |
use_spectral_norm: bool = False | |
gin_channels: int = 512 | |
slm: HyperParametersModelSLM = HyperParametersModelSLM() | |
class HyperParameters(BaseModel): | |
model_name: str = "Dummy" | |
version: str = "2.0-JP-Extra" | |
train: HyperParametersTrain = HyperParametersTrain() | |
data: HyperParametersData = HyperParametersData() | |
model: HyperParametersModel = HyperParametersModel() | |
# 以下は学習時にのみ動的に設定されるパラメータ (通常 config.json には存在しない) | |
model_dir: Optional[str] = None | |
speedup: bool = False | |
repo_id: Optional[str] = None | |
# model_ 以下を Pydantic の保護対象から除外する | |
model_config = ConfigDict(protected_namespaces=()) | |
def load_from_json(json_path: Union[str, Path]) -> "HyperParameters": | |
""" | |
与えられた JSON ファイルからハイパーパラメータを読み込む。 | |
Args: | |
json_path (Union[str, Path]): JSON ファイルのパス | |
Returns: | |
HyperParameters: ハイパーパラメータ | |
""" | |
with open(json_path, encoding="utf-8") as f: | |
return HyperParameters.model_validate_json(f.read()) | |