import os import huggingface_hub as hf_hub import gradio as gr client = hf_hub.InferenceClient(token = os.environ['HF_TOKEN']) client.headers["x-use-cache"] = "0" def image_interface(img): response = client.image_to_text( image = img, model = 'Salesforce/blip-image-captioning-large' ) return response app = gr.Interface( fn = image_interface, inputs = gr.Image(type = 'filepath'), outputs = gr.Textbox(label = 'Image caption'), title = 'BLIP Image Captioning' ) app.launch()