Spaces:
Sleeping
Sleeping
Vivien
commited on
Commit
·
aae8769
1
Parent(s):
5b1c1bd
Add side-by-side comparison of the ViT models
Browse files- app.py +96 -47
- embeddings-vit-base-patch16.npy +3 -0
- embeddings-vit-base-patch32.npy +3 -0
- embeddings-vit-large-patch14-336.npy +3 -0
- embeddings.npy → embeddings-vit-large-patch14.npy +0 -0
- embeddings2-vit-base-patch16.npy +3 -0
- embeddings2-vit-base-patch32.npy +3 -0
- embeddings2-vit-large-patch14-336.npy +3 -0
- embeddings2.npy → embeddings2-vit-large-patch14.npy +0 -0
app.py
CHANGED
@@ -5,38 +5,40 @@ import pandas as pd, numpy as np
|
|
5 |
from transformers import CLIPProcessor, CLIPModel
|
6 |
from st_clickable_images import clickable_images
|
7 |
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
hash_funcs={
|
12 |
-
CLIPModel: lambda _: None,
|
13 |
-
CLIPProcessor: lambda _: None,
|
14 |
-
dict: lambda _: None,
|
15 |
-
},
|
16 |
-
)
|
17 |
def load():
|
18 |
-
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
|
19 |
-
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
20 |
df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")}
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
)
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"}
|
31 |
|
32 |
|
33 |
-
def compute_text_embeddings(list_of_strings):
|
34 |
-
inputs =
|
35 |
-
result =
|
36 |
return result / np.linalg.norm(result, axis=1, keepdims=True)
|
37 |
|
38 |
|
39 |
-
def image_search(query, corpus, n_results=24):
|
40 |
positive_embeddings = None
|
41 |
|
42 |
def concatenate_embeddings(e1, e2):
|
@@ -57,25 +59,25 @@ def image_search(query, corpus, n_results=24):
|
|
57 |
idx, remainder = int(idx), remainder.strip()
|
58 |
k2 = 0 if corpus2 == "Unsplash" else 1
|
59 |
positive_embeddings = concatenate_embeddings(
|
60 |
-
positive_embeddings, embeddings[k2][idx : idx + 1, :]
|
61 |
)
|
62 |
if len(remainder) > 0:
|
63 |
positive_embeddings = concatenate_embeddings(
|
64 |
-
positive_embeddings, compute_text_embeddings([remainder])
|
65 |
)
|
66 |
else:
|
67 |
positive_embeddings = concatenate_embeddings(
|
68 |
-
positive_embeddings, compute_text_embeddings([positive_query])
|
69 |
)
|
70 |
-
dot_product = embeddings[k] @ positive_embeddings.T
|
71 |
dot_product = dot_product - np.median(dot_product, axis=0)
|
72 |
dot_product = dot_product / np.max(dot_product, axis=0, keepdims=True)
|
73 |
dot_product = np.min(dot_product, axis=1)
|
74 |
|
75 |
if len(splitted_query) > 1:
|
76 |
negative_queries = (" ".join(splitted_query[1:])).split(";")
|
77 |
-
negative_embeddings = compute_text_embeddings(negative_queries)
|
78 |
-
dot_product2 = embeddings[k] @ negative_embeddings.T
|
79 |
dot_product2 = dot_product2 - np.median(dot_product2, axis=0)
|
80 |
dot_product2 = dot_product2 / np.max(dot_product2, axis=0, keepdims=True)
|
81 |
dot_product -= np.max(np.maximum(dot_product2, 0), axis=1)
|
@@ -96,7 +98,7 @@ description = """
|
|
96 |
|
97 |
**Enter your query and hit enter**
|
98 |
|
99 |
-
*Built with OpenAI's [CLIP](https://openai.com/blog/clip/)
|
100 |
|
101 |
*Inspired by [Unsplash Image Search](https://github.com/haltakov/natural-language-image-search) from Vladimir Haltakov and [Alph, The Sacred River](https://github.com/thoppe/alph-the-sacred-river) from Travis Hoppe*
|
102 |
"""
|
@@ -107,6 +109,12 @@ howto = """
|
|
107 |
- If the input includes "**EXCLUDING**", the part right of it will be used as a negative query
|
108 |
"""
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
def main():
|
112 |
st.markdown(
|
@@ -124,10 +132,10 @@ def main():
|
|
124 |
margin-left: 5px;
|
125 |
margin-right: 5px;
|
126 |
}
|
127 |
-
|
128 |
-
|
129 |
}
|
130 |
-
section
|
131 |
padding-top: 30px;
|
132 |
}
|
133 |
div.reportview-container > section:first-child{
|
@@ -145,6 +153,9 @@ def main():
|
|
145 |
st.sidebar.markdown(description)
|
146 |
with st.sidebar.expander("Advanced use"):
|
147 |
st.markdown(howto)
|
|
|
|
|
|
|
148 |
|
149 |
_, c, _ = st.columns((1, 3, 1))
|
150 |
if "query" in st.session_state:
|
@@ -152,27 +163,65 @@ def main():
|
|
152 |
else:
|
153 |
query = c.text_input("", value="clouds at sunset")
|
154 |
corpus = st.radio("", ["Unsplash", "Movies"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
if len(query) > 0:
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
change_query = False
|
169 |
if "last_clicked" not in st.session_state:
|
170 |
change_query = True
|
171 |
else:
|
172 |
-
if
|
173 |
change_query = True
|
174 |
if change_query:
|
175 |
-
|
|
|
|
|
|
|
176 |
st.experimental_rerun()
|
177 |
|
178 |
|
|
|
5 |
from transformers import CLIPProcessor, CLIPModel
|
6 |
from st_clickable_images import clickable_images
|
7 |
|
8 |
+
MODEL_NAMES = ["base-patch32", "base-patch16", "large-patch14", "large-patch14-336"]
|
9 |
|
10 |
+
|
11 |
+
@st.cache(show_spinner=False, hash_funcs={dict: lambda _: None})
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def load():
|
|
|
|
|
13 |
df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")}
|
14 |
+
models = {}
|
15 |
+
processors = {}
|
16 |
+
embeddings = {}
|
17 |
+
for name in MODEL_NAMES:
|
18 |
+
models[name] = CLIPModel.from_pretrained(f"openai/clip-vit-{name}")
|
19 |
+
processors[name] = CLIPProcessor.from_pretrained(f"openai/clip-vit-{name}")
|
20 |
+
embeddings[name] = {
|
21 |
+
0: np.load(f"embeddings-vit-{name}.npy"),
|
22 |
+
1: np.load(f"embeddings2-vit-{name}.npy"),
|
23 |
+
}
|
24 |
+
for k in [0, 1]:
|
25 |
+
embeddings[name][k] = embeddings[name][k] / np.linalg.norm(
|
26 |
+
embeddings[name][k], axis=1, keepdims=True
|
27 |
+
)
|
28 |
+
return models, processors, df, embeddings
|
29 |
+
|
30 |
+
|
31 |
+
models, processors, df, embeddings = load()
|
32 |
source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"}
|
33 |
|
34 |
|
35 |
+
def compute_text_embeddings(list_of_strings, name):
|
36 |
+
inputs = processors[name](text=list_of_strings, return_tensors="pt", padding=True)
|
37 |
+
result = models[name].get_text_features(**inputs).detach().numpy()
|
38 |
return result / np.linalg.norm(result, axis=1, keepdims=True)
|
39 |
|
40 |
|
41 |
+
def image_search(query, corpus, name, n_results=24):
|
42 |
positive_embeddings = None
|
43 |
|
44 |
def concatenate_embeddings(e1, e2):
|
|
|
59 |
idx, remainder = int(idx), remainder.strip()
|
60 |
k2 = 0 if corpus2 == "Unsplash" else 1
|
61 |
positive_embeddings = concatenate_embeddings(
|
62 |
+
positive_embeddings, embeddings[name][k2][idx : idx + 1, :]
|
63 |
)
|
64 |
if len(remainder) > 0:
|
65 |
positive_embeddings = concatenate_embeddings(
|
66 |
+
positive_embeddings, compute_text_embeddings([remainder], name)
|
67 |
)
|
68 |
else:
|
69 |
positive_embeddings = concatenate_embeddings(
|
70 |
+
positive_embeddings, compute_text_embeddings([positive_query], name)
|
71 |
)
|
72 |
+
dot_product = embeddings[name][k] @ positive_embeddings.T
|
73 |
dot_product = dot_product - np.median(dot_product, axis=0)
|
74 |
dot_product = dot_product / np.max(dot_product, axis=0, keepdims=True)
|
75 |
dot_product = np.min(dot_product, axis=1)
|
76 |
|
77 |
if len(splitted_query) > 1:
|
78 |
negative_queries = (" ".join(splitted_query[1:])).split(";")
|
79 |
+
negative_embeddings = compute_text_embeddings(negative_queries, name)
|
80 |
+
dot_product2 = embeddings[name][k] @ negative_embeddings.T
|
81 |
dot_product2 = dot_product2 - np.median(dot_product2, axis=0)
|
82 |
dot_product2 = dot_product2 / np.max(dot_product2, axis=0, keepdims=True)
|
83 |
dot_product -= np.max(np.maximum(dot_product2, 0), axis=1)
|
|
|
98 |
|
99 |
**Enter your query and hit enter**
|
100 |
|
101 |
+
*Built with OpenAI's [CLIP](https://openai.com/blog/clip/) models, 🤗 Hugging Face's [transformers library](https://huggingface.co/transformers/), [Streamlit](https://streamlit.io/), 25k images from [Unsplash](https://unsplash.com/) and 8k images from [The Movie Database (TMDB)](https://www.themoviedb.org/)*
|
102 |
|
103 |
*Inspired by [Unsplash Image Search](https://github.com/haltakov/natural-language-image-search) from Vladimir Haltakov and [Alph, The Sacred River](https://github.com/thoppe/alph-the-sacred-river) from Travis Hoppe*
|
104 |
"""
|
|
|
109 |
- If the input includes "**EXCLUDING**", the part right of it will be used as a negative query
|
110 |
"""
|
111 |
|
112 |
+
div_style = {
|
113 |
+
"display": "flex",
|
114 |
+
"justify-content": "center",
|
115 |
+
"flex-wrap": "wrap",
|
116 |
+
}
|
117 |
+
|
118 |
|
119 |
def main():
|
120 |
st.markdown(
|
|
|
132 |
margin-left: 5px;
|
133 |
margin-right: 5px;
|
134 |
}
|
135 |
+
.row-widget {
|
136 |
+
margin-top: -25px;
|
137 |
}
|
138 |
+
section>div:first-child {
|
139 |
padding-top: 30px;
|
140 |
}
|
141 |
div.reportview-container > section:first-child{
|
|
|
153 |
st.sidebar.markdown(description)
|
154 |
with st.sidebar.expander("Advanced use"):
|
155 |
st.markdown(howto)
|
156 |
+
mode = st.sidebar.selectbox(
|
157 |
+
"", ["Results for ViT-L/14@336px", "Comparison of 2 models"], index=0
|
158 |
+
)
|
159 |
|
160 |
_, c, _ = st.columns((1, 3, 1))
|
161 |
if "query" in st.session_state:
|
|
|
163 |
else:
|
164 |
query = c.text_input("", value="clouds at sunset")
|
165 |
corpus = st.radio("", ["Unsplash", "Movies"])
|
166 |
+
|
167 |
+
models_dict = {
|
168 |
+
"ViT-B/32 (quickest)": "base-patch32",
|
169 |
+
"ViT-B/16 (quick)": "base-patch16",
|
170 |
+
"ViT-L/14 (slow)": "large-patch14",
|
171 |
+
"ViT-L/14@336px (slowest)": "large-patch14-336",
|
172 |
+
}
|
173 |
+
|
174 |
+
if "Comparison" in mode:
|
175 |
+
c1, c2 = st.columns((1, 1))
|
176 |
+
selection1 = c1.selectbox("", models_dict.keys(), index=0)
|
177 |
+
selection2 = c2.selectbox("", models_dict.keys(), index=3)
|
178 |
+
name1 = models_dict[selection1]
|
179 |
+
name2 = models_dict[selection2]
|
180 |
+
else:
|
181 |
+
name1 = MODEL_NAMES[-1]
|
182 |
+
|
183 |
if len(query) > 0:
|
184 |
+
results1 = image_search(query, corpus, name1)
|
185 |
+
if "Comparison" in mode:
|
186 |
+
with c1:
|
187 |
+
clicked1 = clickable_images(
|
188 |
+
[result[0] for result in results1],
|
189 |
+
titles=[result[1] for result in results1],
|
190 |
+
div_style=div_style,
|
191 |
+
img_style={"margin": "2px", "height": "150px"},
|
192 |
+
key=query + corpus + name1 + "1",
|
193 |
+
)
|
194 |
+
results2 = image_search(query, corpus, name2)
|
195 |
+
with c2:
|
196 |
+
clicked2 = clickable_images(
|
197 |
+
[result[0] for result in results2],
|
198 |
+
titles=[result[1] for result in results2],
|
199 |
+
div_style=div_style,
|
200 |
+
img_style={"margin": "2px", "height": "150px"},
|
201 |
+
key=query + corpus + name2 + "2",
|
202 |
+
)
|
203 |
+
else:
|
204 |
+
clicked1 = clickable_images(
|
205 |
+
[result[0] for result in results1],
|
206 |
+
titles=[result[1] for result in results1],
|
207 |
+
div_style=div_style,
|
208 |
+
img_style={"margin": "2px", "height": "200px"},
|
209 |
+
key=query + corpus + name1 + "1",
|
210 |
+
)
|
211 |
+
clicked2 = -1
|
212 |
+
|
213 |
+
if clicked2 >= 0 or clicked1 >= 0:
|
214 |
change_query = False
|
215 |
if "last_clicked" not in st.session_state:
|
216 |
change_query = True
|
217 |
else:
|
218 |
+
if max(clicked2, clicked1) != st.session_state["last_clicked"]:
|
219 |
change_query = True
|
220 |
if change_query:
|
221 |
+
if clicked1 >= 0:
|
222 |
+
st.session_state["query"] = f"[{corpus}:{results1[clicked1][2]}]"
|
223 |
+
elif clicked2 >= 0:
|
224 |
+
st.session_state["query"] = f"[{corpus}:{results2[clicked2][2]}]"
|
225 |
st.experimental_rerun()
|
226 |
|
227 |
|
embeddings-vit-base-patch16.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:125430e11a4a415ec0c0fc5339f97544f0447e4b0a24c20f2e59f8852e706afc
|
3 |
+
size 51200128
|
embeddings-vit-base-patch32.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f7ebdff24079665faf58d07045056a63b5499753e3ffbda479691d53de3ab38
|
3 |
+
size 51200128
|
embeddings-vit-large-patch14-336.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f79f10ebe267b4ee7acd553dfe0ee31df846123630058a6d58c04bf22e0ad068
|
3 |
+
size 76800128
|
embeddings.npy → embeddings-vit-large-patch14.npy
RENAMED
File without changes
|
embeddings2-vit-base-patch16.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:153cf3fae2385d51fe8729d3a1c059f611ca47a3fc501049708114d1bbf79049
|
3 |
+
size 16732288
|
embeddings2-vit-base-patch32.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7d545bed86121dac1cedcc1de61ea5295f5840c1eb751637e6628ac54faef81
|
3 |
+
size 16732288
|
embeddings2-vit-large-patch14-336.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e66eb377465fbfaa56cec079aa3e214533ceac43646f2ca78028ae4d8ad6d03
|
3 |
+
size 25098368
|
embeddings2.npy → embeddings2-vit-large-patch14.npy
RENAMED
File without changes
|