Spaces:
Runtime error
Runtime error
vineetsharma
commited on
Commit
·
460cdbb
1
Parent(s):
0b0e130
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ from datasets import load_dataset
|
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
|
8 |
## Imports for MMS
|
9 |
-
|
10 |
|
11 |
|
12 |
|
@@ -25,9 +25,16 @@ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base",
|
|
25 |
# For Dutch
|
26 |
|
27 |
##### speecht5 #####
|
28 |
-
model_id = 'sanchit-gandhi/speecht5_tts_vox_nl'
|
29 |
-
processor = SpeechT5Processor.from_pretrained(model_id)
|
30 |
-
model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
33 |
|
@@ -35,6 +42,8 @@ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(devic
|
|
35 |
|
36 |
|
37 |
|
|
|
|
|
38 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
39 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
40 |
|
@@ -48,11 +57,21 @@ def translate(audio):
|
|
48 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
|
49 |
return outputs["text"]
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
def synthesise(text):
|
53 |
-
inputs =
|
54 |
-
|
|
|
|
|
|
|
55 |
return speech.cpu()
|
|
|
56 |
|
57 |
|
58 |
def speech_to_speech_translation(audio):
|
|
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
|
8 |
## Imports for MMS
|
9 |
+
from transformers import VitsModel, VitsTokenizer
|
10 |
|
11 |
|
12 |
|
|
|
25 |
# For Dutch
|
26 |
|
27 |
##### speecht5 #####
|
28 |
+
# model_id = 'sanchit-gandhi/speecht5_tts_vox_nl'
|
29 |
+
# processor = SpeechT5Processor.from_pretrained(model_id)
|
30 |
+
# model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
|
31 |
+
|
32 |
+
# vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
33 |
+
|
34 |
+
|
35 |
+
##### mms #####
|
36 |
+
model = VitsModel.from_pretrained("Matthijs/mms-tts-nld")
|
37 |
+
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-nld")
|
38 |
|
39 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
40 |
|
|
|
42 |
|
43 |
|
44 |
|
45 |
+
|
46 |
+
|
47 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
48 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
49 |
|
|
|
57 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
|
58 |
return outputs["text"]
|
59 |
|
60 |
+
# Original
|
61 |
+
# def synthesise(text):
|
62 |
+
# inputs = processor(text=text, return_tensors="pt")
|
63 |
+
# speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
64 |
+
# return speech.cpu()
|
65 |
+
|
66 |
|
67 |
def synthesise(text):
|
68 |
+
inputs = tokenizer(text, return_tensors="pt")
|
69 |
+
with torch.no_grad():
|
70 |
+
outputs = model(inputs["input_ids"])
|
71 |
+
speech = outputs.audio[0]
|
72 |
+
|
73 |
return speech.cpu()
|
74 |
+
|
75 |
|
76 |
|
77 |
def speech_to_speech_translation(audio):
|