Spaces:
Running
Running
vijul.shah
commited on
Commit
·
51ba5d6
1
Parent(s):
dc32a0b
Added models and supporting files
Browse files- .gitignore +1 -0
- config.yml +50 -0
- packages.txt +0 -0
- pre_trained_models/ResNet18/right_eye.pt +3 -0
- pre_trained_models/ResNet50/left_eye.pt +3 -0
- pre_trained_models/ResNet50/right_eye.pt +3 -0
- registrations/models.py +124 -0
- registry.py +82 -0
- registry_utils.py +79 -0
- requirements.txt +27 -0
- utils.py +11 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__/
|
config.yml
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
seed: 42
|
2 |
+
|
3 |
+
feature_extraction_configs:
|
4 |
+
blink_detection: true
|
5 |
+
extraction_library: "mediapipe"
|
6 |
+
show_features: ['full_imgs', 'faces', 'eyes', 'blinks', 'iris']
|
7 |
+
|
8 |
+
model_configs:
|
9 |
+
models_path: "pre_trained_models"
|
10 |
+
registered_model_names: ["ResNet18", "ResNet50"]
|
11 |
+
labels: ["left_eye", "right_eye"]
|
12 |
+
targets: ["left_pupil", "right_pupil"]
|
13 |
+
num_classes: 1
|
14 |
+
|
15 |
+
xai_configs:
|
16 |
+
attribution_methods: [
|
17 |
+
"IntegratedGradients",
|
18 |
+
"Saliency",
|
19 |
+
"InputXGradient",
|
20 |
+
"GuidedBackprop",
|
21 |
+
"Deconvolution",
|
22 |
+
"GuidedGradCam",
|
23 |
+
"LayerGradCam",
|
24 |
+
"LayerGradientXActivation",
|
25 |
+
]
|
26 |
+
cam_methods: [
|
27 |
+
"CAM",
|
28 |
+
"GradCAM",
|
29 |
+
"GradCAMpp",
|
30 |
+
"SmoothGradCAMpp",
|
31 |
+
"ScoreCAM",
|
32 |
+
"SSCAM",
|
33 |
+
"ISCAM",
|
34 |
+
"XGradCAM",
|
35 |
+
"LayerCAM",
|
36 |
+
]
|
37 |
+
|
38 |
+
use_sr: false
|
39 |
+
|
40 |
+
upscale_configs:
|
41 |
+
upscale: [1, 2, 3, 4]
|
42 |
+
upscale_method_configs:
|
43 |
+
size: [16, 32]
|
44 |
+
antialias: true
|
45 |
+
interpolation: ["bicubic"]
|
46 |
+
|
47 |
+
sr_methods: ["GFPGAN", "RealESRGAN", "SRResNet", "CodeFormer", "HAT"]
|
48 |
+
sr_method_configs:
|
49 |
+
bg_upsampler_name: "realesrgan"
|
50 |
+
prefered_net_in_upsampler: "RRDBNet"
|
packages.txt
ADDED
File without changes
|
pre_trained_models/ResNet18/right_eye.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68e2928f13900580bcb9b7c1a1f6d4bba863cfcfee2def944b49ef0c09337668
|
3 |
+
size 46843194
|
pre_trained_models/ResNet50/left_eye.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5bd4bac728b71dae9e759b86188206a4f38fbc83b9507dd08f2a6abe1568d995
|
3 |
+
size 102554624
|
pre_trained_models/ResNet50/right_eye.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5179f569ea1886c9ad63ca9d047fdf721a9b59a63313cd9da3f2e3fae25de73
|
3 |
+
size 102554624
|
registrations/models.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import torch.nn as nn
|
3 |
+
import os.path as osp
|
4 |
+
from torchvision import models
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from registry import MODEL_REGISTRY
|
7 |
+
|
8 |
+
root_path = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir))
|
9 |
+
sys.path.append(root_path)
|
10 |
+
|
11 |
+
# ============================= ResNets =============================
|
12 |
+
|
13 |
+
|
14 |
+
# @MODEL_REGISTRY.register()
|
15 |
+
# class ResNet18(nn.Module):
|
16 |
+
# def __init__(self, model_args):
|
17 |
+
# super(ResNet18, self).__init__()
|
18 |
+
# self.num_classes = model_args.get("num_classes", 1)
|
19 |
+
# self.resnet = models.resnet18(weights=None, num_classes=self.num_classes)
|
20 |
+
|
21 |
+
# def forward(self, x, masks=None):
|
22 |
+
# return self.resnet(x)
|
23 |
+
|
24 |
+
|
25 |
+
# @MODEL_REGISTRY.register()
|
26 |
+
# class ResNet18(nn.Module):
|
27 |
+
# def __init__(self, model_args):
|
28 |
+
# super(ResNet18, self).__init__()
|
29 |
+
# self.num_classes = model_args.get("num_classes", 1)
|
30 |
+
# self.resnet = models.resnet18(weights=None, num_classes=self.num_classes)
|
31 |
+
|
32 |
+
# def forward(self, x, masks=None):
|
33 |
+
# # Calculate the padding dynamically based on the input size
|
34 |
+
# height, width = x.shape[2], x.shape[3]
|
35 |
+
# pad_height = max(0, (224 - height) // 2)
|
36 |
+
# pad_width = max(0, (224 - width) // 2)
|
37 |
+
|
38 |
+
# # Apply padding
|
39 |
+
# x = F.pad(
|
40 |
+
# x, (pad_width, pad_width, pad_height, pad_height), mode="constant", value=0
|
41 |
+
# )
|
42 |
+
# x = self.resnet(x)
|
43 |
+
# return x
|
44 |
+
|
45 |
+
|
46 |
+
@MODEL_REGISTRY.register()
|
47 |
+
class ResNet18(nn.Module):
|
48 |
+
def __init__(self, model_args):
|
49 |
+
super(ResNet18, self).__init__()
|
50 |
+
self.num_classes = model_args.get("num_classes", 1)
|
51 |
+
self.resnet = models.resnet18(weights=None)
|
52 |
+
self.regression_head = nn.Linear(1000, self.num_classes)
|
53 |
+
|
54 |
+
def forward(self, x, masks=None):
|
55 |
+
# Calculate the padding dynamically based on the input size
|
56 |
+
height, width = x.shape[2], x.shape[3]
|
57 |
+
pad_height = max(0, (224 - height) // 2)
|
58 |
+
pad_width = max(0, (224 - width) // 2)
|
59 |
+
|
60 |
+
# Apply padding
|
61 |
+
x = F.pad(
|
62 |
+
x, (pad_width, pad_width, pad_height, pad_height), mode="constant", value=0
|
63 |
+
)
|
64 |
+
x = self.resnet(x)
|
65 |
+
x = self.regression_head(x)
|
66 |
+
return x
|
67 |
+
|
68 |
+
|
69 |
+
# @MODEL_REGISTRY.register()
|
70 |
+
# class ResNet50(nn.Module):
|
71 |
+
# def __init__(self, model_args):
|
72 |
+
# super(ResNet50, self).__init__()
|
73 |
+
# self.num_classes = model_args.get("num_classes", 1)
|
74 |
+
# self.resnet = models.resnet50(weights=None, num_classes=self.num_classes)
|
75 |
+
|
76 |
+
# def forward(self, x, masks=None):
|
77 |
+
# return self.resnet(x)
|
78 |
+
|
79 |
+
|
80 |
+
# @MODEL_REGISTRY.register()
|
81 |
+
# class ResNet50(nn.Module):
|
82 |
+
# def __init__(self, model_args):
|
83 |
+
# super(ResNet50, self).__init__()
|
84 |
+
# self.num_classes = model_args.get("num_classes", 1)
|
85 |
+
# self.resnet = models.resnet50(weights=None, num_classes=self.num_classes)
|
86 |
+
|
87 |
+
# def forward(self, x, masks=None):
|
88 |
+
# # Calculate the padding dynamically based on the input size
|
89 |
+
# height, width = x.shape[2], x.shape[3]
|
90 |
+
# pad_height = max(0, (224 - height) // 2)
|
91 |
+
# pad_width = max(0, (224 - width) // 2)
|
92 |
+
|
93 |
+
# # Apply padding
|
94 |
+
# x = F.pad(
|
95 |
+
# x, (pad_width, pad_width, pad_height, pad_height), mode="constant", value=0
|
96 |
+
# )
|
97 |
+
# x = self.resnet(x)
|
98 |
+
# return x
|
99 |
+
|
100 |
+
|
101 |
+
@MODEL_REGISTRY.register()
|
102 |
+
class ResNet50(nn.Module):
|
103 |
+
def __init__(self, model_args):
|
104 |
+
super(ResNet50, self).__init__()
|
105 |
+
self.num_classes = model_args.get("num_classes", 1)
|
106 |
+
self.resnet = models.resnet50(weights=None)
|
107 |
+
self.regression_head = nn.Linear(1000, self.num_classes)
|
108 |
+
|
109 |
+
def forward(self, x, masks=None):
|
110 |
+
# Calculate the padding dynamically based on the input size
|
111 |
+
height, width = x.shape[2], x.shape[3]
|
112 |
+
pad_height = max(0, (224 - height) // 2)
|
113 |
+
pad_width = max(0, (224 - width) // 2)
|
114 |
+
|
115 |
+
# Apply padding
|
116 |
+
x = F.pad(
|
117 |
+
x, (pad_width, pad_width, pad_height, pad_height), mode="constant", value=0
|
118 |
+
)
|
119 |
+
x = self.resnet(x)
|
120 |
+
x = self.regression_head(x)
|
121 |
+
return x
|
122 |
+
|
123 |
+
|
124 |
+
print("Registered models in MODEL_REGISTRY:", MODEL_REGISTRY.keys())
|
registry.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from: https://github.com/facebookresearch/fvcore/blob/master/fvcore/common/registry.py # noqa: E501
|
2 |
+
|
3 |
+
|
4 |
+
class Registry:
|
5 |
+
"""
|
6 |
+
The registry that provides name -> object mapping, to support third-party
|
7 |
+
users' custom modules.
|
8 |
+
|
9 |
+
To create a registry (e.g. a backbone registry):
|
10 |
+
|
11 |
+
.. code-block:: python
|
12 |
+
|
13 |
+
BACKBONE_REGISTRY = Registry('BACKBONE')
|
14 |
+
|
15 |
+
To register an object:
|
16 |
+
|
17 |
+
.. code-block:: python
|
18 |
+
|
19 |
+
@BACKBONE_REGISTRY.register()
|
20 |
+
class MyBackbone():
|
21 |
+
...
|
22 |
+
|
23 |
+
Or:
|
24 |
+
|
25 |
+
.. code-block:: python
|
26 |
+
|
27 |
+
BACKBONE_REGISTRY.register(MyBackbone)
|
28 |
+
"""
|
29 |
+
|
30 |
+
def __init__(self, name):
|
31 |
+
"""
|
32 |
+
Args:
|
33 |
+
name (str): the name of this registry
|
34 |
+
"""
|
35 |
+
self._name = name
|
36 |
+
self._obj_map = {}
|
37 |
+
|
38 |
+
def _do_register(self, name, obj):
|
39 |
+
assert name not in self._obj_map, (
|
40 |
+
f"An object named '{name}' was already registered "
|
41 |
+
f"in '{self._name}' registry!"
|
42 |
+
)
|
43 |
+
self._obj_map[name] = obj
|
44 |
+
|
45 |
+
def register(self, obj=None):
|
46 |
+
"""
|
47 |
+
Register the given object under the the name `obj.__name__`.
|
48 |
+
Can be used as either a decorator or not.
|
49 |
+
See docstring of this class for usage.
|
50 |
+
"""
|
51 |
+
if obj is None:
|
52 |
+
# used as a decorator
|
53 |
+
def deco(func_or_class):
|
54 |
+
name = func_or_class.__name__
|
55 |
+
self._do_register(name, func_or_class)
|
56 |
+
return func_or_class
|
57 |
+
|
58 |
+
return deco
|
59 |
+
|
60 |
+
# used as a function call
|
61 |
+
name = obj.__name__
|
62 |
+
self._do_register(name, obj)
|
63 |
+
|
64 |
+
def get(self, name):
|
65 |
+
ret = self._obj_map.get(name)
|
66 |
+
if ret is None:
|
67 |
+
raise KeyError(
|
68 |
+
f"No object named '{name}' found in '{self._name}' registry!"
|
69 |
+
)
|
70 |
+
return ret
|
71 |
+
|
72 |
+
def __contains__(self, name):
|
73 |
+
return name in self._obj_map
|
74 |
+
|
75 |
+
def __iter__(self):
|
76 |
+
return iter(self._obj_map.items())
|
77 |
+
|
78 |
+
def keys(self):
|
79 |
+
return self._obj_map.keys()
|
80 |
+
|
81 |
+
|
82 |
+
MODEL_REGISTRY = Registry("model")
|
registry_utils.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import importlib
|
3 |
+
from os import path as osp
|
4 |
+
|
5 |
+
|
6 |
+
def scandir(dir_path, suffix=None, recursive=False, full_path=False):
|
7 |
+
"""Scan a directory to find the interested files.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
dir_path (str): Path of the directory.
|
11 |
+
suffix (str | tuple(str), optional): File suffix that we are
|
12 |
+
interested in. Default: None.
|
13 |
+
recursive (bool, optional): If set to True, recursively scan the
|
14 |
+
directory. Default: False.
|
15 |
+
full_path (bool, optional): If set to True, include the dir_path.
|
16 |
+
Default: False.
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
A generator for all the interested files with relative paths.
|
20 |
+
"""
|
21 |
+
|
22 |
+
if (suffix is not None) and not isinstance(suffix, (str, tuple)):
|
23 |
+
raise TypeError('"suffix" must be a string or tuple of strings')
|
24 |
+
|
25 |
+
root = dir_path
|
26 |
+
|
27 |
+
def _scandir(dir_path, suffix, recursive):
|
28 |
+
for entry in os.scandir(dir_path):
|
29 |
+
if not entry.name.startswith(".") and entry.is_file():
|
30 |
+
if full_path:
|
31 |
+
return_path = entry.path
|
32 |
+
else:
|
33 |
+
return_path = osp.relpath(entry.path, root)
|
34 |
+
|
35 |
+
if suffix is None:
|
36 |
+
yield return_path
|
37 |
+
elif return_path.endswith(suffix):
|
38 |
+
yield return_path
|
39 |
+
else:
|
40 |
+
if recursive:
|
41 |
+
yield from _scandir(entry.path, suffix=suffix, recursive=recursive)
|
42 |
+
else:
|
43 |
+
continue
|
44 |
+
|
45 |
+
return _scandir(dir_path, suffix=suffix, recursive=recursive)
|
46 |
+
|
47 |
+
|
48 |
+
def import_registered_modules(registration_folder="registrations"):
|
49 |
+
"""
|
50 |
+
Import all registered modules from the specified folder.
|
51 |
+
|
52 |
+
This function automatically scans all the files under the specified folder and imports all the required modules for registry.
|
53 |
+
|
54 |
+
Parameters:
|
55 |
+
registration_folder (str, optional): Path to the folder containing registration modules. Default is "registrations".
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
list: List of imported modules.
|
59 |
+
"""
|
60 |
+
|
61 |
+
print("\n")
|
62 |
+
|
63 |
+
registration_modules_folder = (
|
64 |
+
osp.dirname(osp.abspath(__file__)) + f"/{registration_folder}"
|
65 |
+
)
|
66 |
+
print("registration_modules_folder = ", registration_modules_folder)
|
67 |
+
|
68 |
+
registration_modules_file_names = [
|
69 |
+
osp.splitext(osp.basename(v))[0]
|
70 |
+
for v in scandir(dir_path=registration_modules_folder)
|
71 |
+
]
|
72 |
+
print("registration_modules_file_names = ", registration_modules_file_names)
|
73 |
+
|
74 |
+
imported_modules = [
|
75 |
+
importlib.import_module(f"{registration_folder}.{file_name}")
|
76 |
+
for file_name in registration_modules_file_names
|
77 |
+
]
|
78 |
+
print("imported_modules = ", imported_modules)
|
79 |
+
print("\n")
|
requirements.txt
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tqdm
|
2 |
+
PyYAML
|
3 |
+
numpy
|
4 |
+
pandas
|
5 |
+
matplotlib
|
6 |
+
seaborn
|
7 |
+
mlflow
|
8 |
+
pillow
|
9 |
+
scikit_learn
|
10 |
+
torch
|
11 |
+
captum
|
12 |
+
evaluate
|
13 |
+
# basicsr
|
14 |
+
facexlib
|
15 |
+
realesrgan
|
16 |
+
opencv_python
|
17 |
+
cmake
|
18 |
+
dlib
|
19 |
+
einops
|
20 |
+
transformers
|
21 |
+
# gfpgan
|
22 |
+
# streamlit
|
23 |
+
mediapipe
|
24 |
+
imutils
|
25 |
+
scipy
|
26 |
+
torchvision==0.16.0
|
27 |
+
torchcam
|
utils.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from registry import MODEL_REGISTRY
|
2 |
+
|
3 |
+
|
4 |
+
def get_model(model_configs):
|
5 |
+
registered_model = MODEL_REGISTRY.get(model_configs["registered_model_name"])
|
6 |
+
model_configs.pop("registered_model_name")
|
7 |
+
if len(model_configs) > 0:
|
8 |
+
model = registered_model(model_configs)
|
9 |
+
else:
|
10 |
+
model = registered_model()
|
11 |
+
return model
|