Spaces:
Running
Running
vijul.shah
commited on
Commit
·
3733e70
1
Parent(s):
5f721d1
Video Frames Drift Bug Solved, Added diff colors for charts
Browse files- app.py +54 -30
- app_utils.py +75 -100
app.py
CHANGED
@@ -38,18 +38,6 @@ LABEL_MAP = ["left_pupil", "right_pupil"]
|
|
38 |
|
39 |
def main():
|
40 |
st.set_page_config(page_title="Pupil Diameter Estimator", layout="wide")
|
41 |
-
st.markdown(
|
42 |
-
"""
|
43 |
-
<style>
|
44 |
-
/* Remove the top margin/padding */
|
45 |
-
.block-container {
|
46 |
-
padding-top: 0rem;
|
47 |
-
padding-bottom: 1rem; /* Adjust this as needed */
|
48 |
-
}
|
49 |
-
</style>
|
50 |
-
""",
|
51 |
-
unsafe_allow_html=True,
|
52 |
-
)
|
53 |
st.title("EyeDentify Playground")
|
54 |
cols = st.columns((1, 1))
|
55 |
cols[0].header("Input")
|
@@ -93,6 +81,8 @@ def main():
|
|
93 |
|
94 |
blink_detection = st.sidebar.checkbox("Detect Blinks")
|
95 |
|
|
|
|
|
96 |
if st.sidebar.button("Predict Diameter & Compute CAM"):
|
97 |
if uploaded_file is None:
|
98 |
st.sidebar.error("Please upload an image or video")
|
@@ -146,7 +136,8 @@ def main():
|
|
146 |
# Create a layout for the charts
|
147 |
cols = st.columns(num_columns)
|
148 |
|
149 |
-
colors = ["#2ca02c", "#d62728", "#1f77b4", "#ff7f0e"] # Green, Red, Blue, Orange
|
|
|
150 |
|
151 |
# Iterate through categories and assign charts to columns
|
152 |
for i, (category, values) in enumerate(predicted_diameters.items()):
|
@@ -165,9 +156,9 @@ def main():
|
|
165 |
max_value = max(filter(lambda x: x is not None, values), default=None)
|
166 |
|
167 |
# Create an Altair chart with y-axis limits
|
168 |
-
|
169 |
alt.Chart(df)
|
170 |
-
.mark_line(
|
171 |
.encode(
|
172 |
x=alt.X("Frame:Q", title="Frame Number"),
|
173 |
y=alt.Y(
|
@@ -176,50 +167,83 @@ def main():
|
|
176 |
scale=alt.Scale(domain=[min_value, max_value]),
|
177 |
),
|
178 |
tooltip=[
|
179 |
-
|
180 |
alt.Tooltip(f"{category}:Q", title="Diameter"),
|
181 |
],
|
182 |
)
|
183 |
-
.properties(title=f"{category} - Predicted Diameters")
|
184 |
-
.configure_axis(grid=True)
|
185 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
# Display the Altair chart
|
188 |
-
st.altair_chart(
|
189 |
|
190 |
if eyes_ratios is not None and len(eyes_ratios) > 0:
|
191 |
-
df = pd.DataFrame(eyes_ratios, columns=["
|
192 |
df["Frame"] = range(1, len(eyes_ratios) + 1) # Create a frame column starting from 1
|
193 |
|
194 |
# Create an Altair chart for eyes_ratios
|
195 |
line_chart = (
|
196 |
alt.Chart(df)
|
197 |
-
.mark_line(
|
198 |
.encode(
|
199 |
x=alt.X("Frame:Q", title="Frame Number"),
|
200 |
-
y=alt.Y("
|
201 |
-
tooltip=[
|
202 |
-
alt.Tooltip("Frame:Q", title="Frame Number"),
|
203 |
-
alt.Tooltip("Eyes Aspect Ratio:Q", title="Eyes Aspect Ratio"),
|
204 |
-
],
|
205 |
)
|
206 |
# .properties(title="Eyes Aspect Ratios (EARs)")
|
207 |
# .configure_axis(grid=True)
|
208 |
)
|
|
|
209 |
|
210 |
# Create a horizontal rule at y=0.22
|
211 |
line1 = alt.Chart(pd.DataFrame({"y": [0.22]})).mark_rule(color="red").encode(y="y:Q")
|
212 |
|
213 |
-
line2 = alt.Chart(pd.DataFrame({"y": [0.25]})).mark_rule(color="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
-
# Combine line chart
|
216 |
-
final_chart =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
# Configure axis properties at the chart level
|
219 |
final_chart = final_chart.configure_axis(grid=True)
|
220 |
|
221 |
# Display the Altair chart
|
222 |
-
st.subheader("Eyes Aspect Ratios (EARs)")
|
223 |
st.altair_chart(final_chart, use_container_width=True)
|
224 |
|
225 |
|
|
|
38 |
|
39 |
def main():
|
40 |
st.set_page_config(page_title="Pupil Diameter Estimator", layout="wide")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
st.title("EyeDentify Playground")
|
42 |
cols = st.columns((1, 1))
|
43 |
cols[0].header("Input")
|
|
|
81 |
|
82 |
blink_detection = st.sidebar.checkbox("Detect Blinks")
|
83 |
|
84 |
+
st.markdown("<style>#vg-tooltip-element{z-index: 1000051}</style>", unsafe_allow_html=True)
|
85 |
+
|
86 |
if st.sidebar.button("Predict Diameter & Compute CAM"):
|
87 |
if uploaded_file is None:
|
88 |
st.sidebar.error("Please upload an image or video")
|
|
|
136 |
# Create a layout for the charts
|
137 |
cols = st.columns(num_columns)
|
138 |
|
139 |
+
# colors = ["#2ca02c", "#d62728", "#1f77b4", "#ff7f0e"] # Green, Red, Blue, Orange
|
140 |
+
colors = ["#1f77b4", "#ff7f0e", "#636363"] # Blue, Orange, Gray
|
141 |
|
142 |
# Iterate through categories and assign charts to columns
|
143 |
for i, (category, values) in enumerate(predicted_diameters.items()):
|
|
|
156 |
max_value = max(filter(lambda x: x is not None, values), default=None)
|
157 |
|
158 |
# Create an Altair chart with y-axis limits
|
159 |
+
line_chart = (
|
160 |
alt.Chart(df)
|
161 |
+
.mark_line(color=colors[i])
|
162 |
.encode(
|
163 |
x=alt.X("Frame:Q", title="Frame Number"),
|
164 |
y=alt.Y(
|
|
|
167 |
scale=alt.Scale(domain=[min_value, max_value]),
|
168 |
),
|
169 |
tooltip=[
|
170 |
+
"Frame",
|
171 |
alt.Tooltip(f"{category}:Q", title="Diameter"),
|
172 |
],
|
173 |
)
|
174 |
+
# .properties(title=f"{category} - Predicted Diameters")
|
175 |
+
# .configure_axis(grid=True)
|
176 |
)
|
177 |
+
points_chart = line_chart.mark_point(color=colors[i], filled=True)
|
178 |
+
|
179 |
+
final_chart = (
|
180 |
+
line_chart.properties(title=f"{category} - Predicted Diameters") + points_chart
|
181 |
+
).interactive()
|
182 |
+
|
183 |
+
final_chart = final_chart.configure_axis(grid=True)
|
184 |
|
185 |
# Display the Altair chart
|
186 |
+
st.altair_chart(final_chart, use_container_width=True)
|
187 |
|
188 |
if eyes_ratios is not None and len(eyes_ratios) > 0:
|
189 |
+
df = pd.DataFrame(eyes_ratios, columns=["EAR"])
|
190 |
df["Frame"] = range(1, len(eyes_ratios) + 1) # Create a frame column starting from 1
|
191 |
|
192 |
# Create an Altair chart for eyes_ratios
|
193 |
line_chart = (
|
194 |
alt.Chart(df)
|
195 |
+
.mark_line(color=colors[-1]) # Set color of the line
|
196 |
.encode(
|
197 |
x=alt.X("Frame:Q", title="Frame Number"),
|
198 |
+
y=alt.Y("EAR:Q", title="Eyes Aspect Ratio"),
|
199 |
+
tooltip=["Frame", "EAR"],
|
|
|
|
|
|
|
200 |
)
|
201 |
# .properties(title="Eyes Aspect Ratios (EARs)")
|
202 |
# .configure_axis(grid=True)
|
203 |
)
|
204 |
+
points_chart = line_chart.mark_point(color=colors[-1], filled=True)
|
205 |
|
206 |
# Create a horizontal rule at y=0.22
|
207 |
line1 = alt.Chart(pd.DataFrame({"y": [0.22]})).mark_rule(color="red").encode(y="y:Q")
|
208 |
|
209 |
+
line2 = alt.Chart(pd.DataFrame({"y": [0.25]})).mark_rule(color="green").encode(y="y:Q")
|
210 |
+
|
211 |
+
# Add text annotations for the lines
|
212 |
+
text1 = (
|
213 |
+
alt.Chart(pd.DataFrame({"y": [0.22], "label": ["Definite Blinks (<=0.22)"]}))
|
214 |
+
.mark_text(align="left", dx=100, dy=9, color="red", size=16)
|
215 |
+
.encode(y="y:Q", text="label:N")
|
216 |
+
)
|
217 |
+
|
218 |
+
text2 = (
|
219 |
+
alt.Chart(pd.DataFrame({"y": [0.25], "label": ["No Blinks (>=0.25)"]}))
|
220 |
+
.mark_text(align="left", dx=-150, dy=-9, color="green", size=16)
|
221 |
+
.encode(y="y:Q", text="label:N")
|
222 |
+
)
|
223 |
+
|
224 |
+
# Add gray area text for the region between red and green lines
|
225 |
+
gray_area_text = (
|
226 |
+
alt.Chart(pd.DataFrame({"y": [0.235], "label": ["Gray Area"]}))
|
227 |
+
.mark_text(align="left", dx=0, dy=0, color="gray", size=16)
|
228 |
+
.encode(y="y:Q", text="label:N")
|
229 |
+
)
|
230 |
|
231 |
+
# Combine all elements: line chart, points, rules, and text annotations
|
232 |
+
final_chart = (
|
233 |
+
line_chart.properties(title="Eyes Aspect Ratios (EARs)")
|
234 |
+
+ points_chart
|
235 |
+
+ line1
|
236 |
+
+ line2
|
237 |
+
+ text1
|
238 |
+
+ text2
|
239 |
+
+ gray_area_text
|
240 |
+
).interactive()
|
241 |
|
242 |
# Configure axis properties at the chart level
|
243 |
final_chart = final_chart.configure_axis(grid=True)
|
244 |
|
245 |
# Display the Altair chart
|
246 |
+
# st.subheader("Eyes Aspect Ratios (EARs)")
|
247 |
st.altair_chart(final_chart, use_container_width=True)
|
248 |
|
249 |
|
app_utils.py
CHANGED
@@ -82,6 +82,18 @@ def is_video(file_extension):
|
|
82 |
return file_extension.lower() in ["mp4", "avi", "mov", "mkv", "webm"]
|
83 |
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
def display_results(input_image, cam_frame, pupil_diameter, cols):
|
86 |
"""Displays the input image and overlayed CAM result."""
|
87 |
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
|
@@ -141,6 +153,7 @@ def setup(cols, pupil_selection, tv_model, output_path):
|
|
141 |
output_frames = {}
|
142 |
input_frames = {}
|
143 |
predicted_diameters = {}
|
|
|
144 |
|
145 |
if pupil_selection == "both":
|
146 |
selected_eyes = ["left_eye", "right_eye"]
|
@@ -163,37 +176,30 @@ def setup(cols, pupil_selection, tv_model, output_path):
|
|
163 |
output_frames[eye_type] = []
|
164 |
input_frames[eye_type] = []
|
165 |
predicted_diameters[eye_type] = []
|
|
|
166 |
else:
|
167 |
right_pupil_model = load_model(model_configs)
|
168 |
right_pupil_cam_extractor = None
|
169 |
output_frames[eye_type] = []
|
170 |
input_frames[eye_type] = []
|
171 |
predicted_diameters[eye_type] = []
|
|
|
172 |
|
173 |
-
|
174 |
-
video_output_placeholders = {}
|
175 |
-
video_predictions_placeholders = {}
|
176 |
|
177 |
if output_path:
|
178 |
video_cols = cols[1].columns(len(input_frames.keys()))
|
179 |
|
180 |
for i, eye_type in enumerate(list(input_frames.keys())):
|
181 |
-
|
182 |
-
|
183 |
-
for i, eye_type in enumerate(list(input_frames.keys())):
|
184 |
-
video_output_placeholders[eye_type] = video_cols[i].empty()
|
185 |
-
|
186 |
-
for i, eye_type in enumerate(list(input_frames.keys())):
|
187 |
-
video_predictions_placeholders[eye_type] = video_cols[i].empty()
|
188 |
|
189 |
return (
|
190 |
selected_eyes,
|
191 |
input_frames,
|
192 |
output_frames,
|
193 |
predicted_diameters,
|
194 |
-
|
195 |
-
|
196 |
-
video_predictions_placeholders,
|
197 |
left_pupil_model,
|
198 |
left_pupil_cam_extractor,
|
199 |
right_pupil_model,
|
@@ -214,9 +220,8 @@ def process_frames(
|
|
214 |
input_frames,
|
215 |
output_frames,
|
216 |
predicted_diameters,
|
217 |
-
|
218 |
-
|
219 |
-
video_predictions_placeholders,
|
220 |
left_pupil_model,
|
221 |
left_pupil_cam_extractor,
|
222 |
right_pupil_model,
|
@@ -287,7 +292,6 @@ def process_frames(
|
|
287 |
for i, eye_type in enumerate(selected_eyes):
|
288 |
|
289 |
if blinked:
|
290 |
-
|
291 |
if left_eye is not None and eye_type == "left_eye":
|
292 |
_, height, width = left_eye.squeeze(0).shape
|
293 |
input_image_pil = to_pil_image(left_eye.squeeze(0))
|
@@ -360,19 +364,20 @@ def process_frames(
|
|
360 |
else:
|
361 |
text = predicted_diameter
|
362 |
frame = overlay_text_on_frame(frame, text)
|
|
|
|
|
|
|
363 |
|
364 |
-
|
365 |
-
video_output_placeholders[eye_type].image(output_img_np, use_column_width=True)
|
366 |
-
video_predictions_placeholders[eye_type].image(frame, use_column_width=True)
|
367 |
|
368 |
st.session_state.current_frame = idx + 1
|
369 |
txt = f"<p style='font-size:20px;'> Number of Frames Processed: <strong>{st.session_state.current_frame} / {st.session_state.total_frames}</strong> </p>"
|
370 |
st.session_state.frame_placeholder.markdown(txt, unsafe_allow_html=True)
|
371 |
|
372 |
if output_path:
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
|
377 |
return input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios
|
378 |
|
@@ -387,83 +392,6 @@ def display_video_with_autoplay(video_col, video_path):
|
|
387 |
video_col.markdown(video_html, unsafe_allow_html=True)
|
388 |
|
389 |
|
390 |
-
def get_codec_and_extension(file_format):
|
391 |
-
"""Return codec and file extension based on the format."""
|
392 |
-
if file_format == "mp4":
|
393 |
-
return "H264", ".mp4"
|
394 |
-
elif file_format == "avi":
|
395 |
-
return "MJPG", ".avi"
|
396 |
-
elif file_format == "webm":
|
397 |
-
return "VP80", ".webm"
|
398 |
-
else:
|
399 |
-
return "MJPG", ".avi"
|
400 |
-
|
401 |
-
|
402 |
-
def show_input_frames(input_frames, output_path, codec, video_cols):
|
403 |
-
for i, eye_type in enumerate(input_frames.keys()):
|
404 |
-
in_frames = input_frames[eye_type]
|
405 |
-
height, width, _ = in_frames[0].shape
|
406 |
-
fourcc = cv2.VideoWriter_fourcc(*codec)
|
407 |
-
fps = 10.0
|
408 |
-
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
409 |
-
for frame in in_frames:
|
410 |
-
out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
|
411 |
-
out.release()
|
412 |
-
|
413 |
-
with open(output_path, "rb") as video_file:
|
414 |
-
video_bytes = video_file.read()
|
415 |
-
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
|
416 |
-
display_video_with_autoplay(video_cols[eye_type], video_base64)
|
417 |
-
|
418 |
-
os.remove(output_path)
|
419 |
-
|
420 |
-
|
421 |
-
def show_cam_frames(output_frames, output_path, codec, video_cols):
|
422 |
-
for i, eye_type in enumerate(output_frames.keys()):
|
423 |
-
out_frames = output_frames[eye_type]
|
424 |
-
height, width, _ = out_frames[0].shape
|
425 |
-
fourcc = cv2.VideoWriter_fourcc(*codec)
|
426 |
-
fps = 10.0
|
427 |
-
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
428 |
-
for j, frame in enumerate(out_frames):
|
429 |
-
out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
|
430 |
-
out.release()
|
431 |
-
|
432 |
-
with open(output_path, "rb") as video_file:
|
433 |
-
video_bytes = video_file.read()
|
434 |
-
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
|
435 |
-
display_video_with_autoplay(video_cols[eye_type], video_base64)
|
436 |
-
|
437 |
-
os.remove(output_path)
|
438 |
-
|
439 |
-
|
440 |
-
def show_pred_text_frames(output_frames, output_path, predicted_diameters, codec, video_cols):
|
441 |
-
for i, eye_type in enumerate(output_frames.keys()):
|
442 |
-
|
443 |
-
out_frames = output_frames[eye_type]
|
444 |
-
height, width, _ = out_frames[0].shape
|
445 |
-
fourcc = cv2.VideoWriter_fourcc(*codec)
|
446 |
-
fps = 10.0
|
447 |
-
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
448 |
-
|
449 |
-
for diameter in predicted_diameters[eye_type]:
|
450 |
-
frame = np.zeros((height, width, 3), dtype=np.uint8)
|
451 |
-
if not isinstance(diameter, str):
|
452 |
-
text = f"{diameter:.2f}"
|
453 |
-
else:
|
454 |
-
text = diameter
|
455 |
-
frame = overlay_text_on_frame(frame, text)
|
456 |
-
out.write(frame)
|
457 |
-
out.release()
|
458 |
-
|
459 |
-
with open(output_path, "rb") as video_file:
|
460 |
-
video_bytes = video_file.read()
|
461 |
-
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
|
462 |
-
display_video_with_autoplay(video_cols[eye_type], video_base64)
|
463 |
-
|
464 |
-
os.remove(output_path)
|
465 |
-
|
466 |
-
|
467 |
def process_video(cols, video_frames, tv_model, pupil_selection, output_path, cam_method, blink_detection=False):
|
468 |
|
469 |
resized_frames = []
|
@@ -487,3 +415,50 @@ def convert_diameter(value):
|
|
487 |
return float(value)
|
488 |
except (ValueError, TypeError):
|
489 |
return None # Return None if conversion fails
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
return file_extension.lower() in ["mp4", "avi", "mov", "mkv", "webm"]
|
83 |
|
84 |
|
85 |
+
def get_codec_and_extension(file_format):
|
86 |
+
"""Return codec and file extension based on the format."""
|
87 |
+
if file_format == "mp4":
|
88 |
+
return "H264", ".mp4"
|
89 |
+
elif file_format == "avi":
|
90 |
+
return "MJPG", ".avi"
|
91 |
+
elif file_format == "webm":
|
92 |
+
return "VP80", ".webm"
|
93 |
+
else:
|
94 |
+
return "MJPG", ".avi"
|
95 |
+
|
96 |
+
|
97 |
def display_results(input_image, cam_frame, pupil_diameter, cols):
|
98 |
"""Displays the input image and overlayed CAM result."""
|
99 |
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
|
|
|
153 |
output_frames = {}
|
154 |
input_frames = {}
|
155 |
predicted_diameters = {}
|
156 |
+
pred_diameters_frames = {}
|
157 |
|
158 |
if pupil_selection == "both":
|
159 |
selected_eyes = ["left_eye", "right_eye"]
|
|
|
176 |
output_frames[eye_type] = []
|
177 |
input_frames[eye_type] = []
|
178 |
predicted_diameters[eye_type] = []
|
179 |
+
pred_diameters_frames[eye_type] = []
|
180 |
else:
|
181 |
right_pupil_model = load_model(model_configs)
|
182 |
right_pupil_cam_extractor = None
|
183 |
output_frames[eye_type] = []
|
184 |
input_frames[eye_type] = []
|
185 |
predicted_diameters[eye_type] = []
|
186 |
+
pred_diameters_frames[eye_type] = []
|
187 |
|
188 |
+
video_placeholders = {}
|
|
|
|
|
189 |
|
190 |
if output_path:
|
191 |
video_cols = cols[1].columns(len(input_frames.keys()))
|
192 |
|
193 |
for i, eye_type in enumerate(list(input_frames.keys())):
|
194 |
+
video_placeholders[eye_type] = video_cols[i].empty()
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
return (
|
197 |
selected_eyes,
|
198 |
input_frames,
|
199 |
output_frames,
|
200 |
predicted_diameters,
|
201 |
+
pred_diameters_frames,
|
202 |
+
video_placeholders,
|
|
|
203 |
left_pupil_model,
|
204 |
left_pupil_cam_extractor,
|
205 |
right_pupil_model,
|
|
|
220 |
input_frames,
|
221 |
output_frames,
|
222 |
predicted_diameters,
|
223 |
+
pred_diameters_frames,
|
224 |
+
video_placeholders,
|
|
|
225 |
left_pupil_model,
|
226 |
left_pupil_cam_extractor,
|
227 |
right_pupil_model,
|
|
|
292 |
for i, eye_type in enumerate(selected_eyes):
|
293 |
|
294 |
if blinked:
|
|
|
295 |
if left_eye is not None and eye_type == "left_eye":
|
296 |
_, height, width = left_eye.squeeze(0).shape
|
297 |
input_image_pil = to_pil_image(left_eye.squeeze(0))
|
|
|
364 |
else:
|
365 |
text = predicted_diameter
|
366 |
frame = overlay_text_on_frame(frame, text)
|
367 |
+
pred_diameters_frames[eye_type].append(frame)
|
368 |
+
|
369 |
+
combined_frame = np.vstack((input_img_np, output_img_np, frame))
|
370 |
|
371 |
+
video_placeholders[eye_type].image(combined_frame, use_column_width=True)
|
|
|
|
|
372 |
|
373 |
st.session_state.current_frame = idx + 1
|
374 |
txt = f"<p style='font-size:20px;'> Number of Frames Processed: <strong>{st.session_state.current_frame} / {st.session_state.total_frames}</strong> </p>"
|
375 |
st.session_state.frame_placeholder.markdown(txt, unsafe_allow_html=True)
|
376 |
|
377 |
if output_path:
|
378 |
+
combine_and_show_frames(
|
379 |
+
input_frames, output_frames, pred_diameters_frames, output_path, codec, video_placeholders
|
380 |
+
)
|
381 |
|
382 |
return input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios
|
383 |
|
|
|
392 |
video_col.markdown(video_html, unsafe_allow_html=True)
|
393 |
|
394 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
395 |
def process_video(cols, video_frames, tv_model, pupil_selection, output_path, cam_method, blink_detection=False):
|
396 |
|
397 |
resized_frames = []
|
|
|
415 |
return float(value)
|
416 |
except (ValueError, TypeError):
|
417 |
return None # Return None if conversion fails
|
418 |
+
|
419 |
+
|
420 |
+
def combine_and_show_frames(input_frames, cam_frames, pred_diameters_frames, output_path, codec, video_cols):
|
421 |
+
# Assuming all frames have the same keys (eye types)
|
422 |
+
eye_types = input_frames.keys()
|
423 |
+
|
424 |
+
for i, eye_type in enumerate(eye_types):
|
425 |
+
in_frames = input_frames[eye_type]
|
426 |
+
cam_out_frames = cam_frames[eye_type]
|
427 |
+
pred_diameters_text_frames = pred_diameters_frames[eye_type]
|
428 |
+
|
429 |
+
# Get frame properties (assuming all frames have the same dimensions)
|
430 |
+
height, width, _ = in_frames[0].shape
|
431 |
+
fourcc = cv2.VideoWriter_fourcc(*codec)
|
432 |
+
fps = 10.0
|
433 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height * 3)) # Width is tripled for concatenation
|
434 |
+
|
435 |
+
# Loop through each set of frames and concatenate them
|
436 |
+
for j in range(len(in_frames)):
|
437 |
+
input_frame = in_frames[j]
|
438 |
+
cam_frame = cam_out_frames[j]
|
439 |
+
pred_frame = pred_diameters_text_frames[j]
|
440 |
+
|
441 |
+
# Convert frames to BGR if necessary
|
442 |
+
input_frame_bgr = cv2.cvtColor(input_frame, cv2.COLOR_RGB2BGR)
|
443 |
+
cam_frame_bgr = cv2.cvtColor(cam_frame, cv2.COLOR_RGB2BGR)
|
444 |
+
pred_frame_bgr = cv2.cvtColor(pred_frame, cv2.COLOR_RGB2BGR)
|
445 |
+
|
446 |
+
# Concatenate frames horizontally (input, cam, pred)
|
447 |
+
combined_frame = np.vstack((input_frame_bgr, cam_frame_bgr, pred_frame_bgr))
|
448 |
+
|
449 |
+
# Write the combined frame to the video
|
450 |
+
out.write(combined_frame)
|
451 |
+
|
452 |
+
# Release the video writer
|
453 |
+
out.release()
|
454 |
+
|
455 |
+
# Read the video and encode it in base64 for displaying
|
456 |
+
with open(output_path, "rb") as video_file:
|
457 |
+
video_bytes = video_file.read()
|
458 |
+
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
|
459 |
+
|
460 |
+
# Display the combined video
|
461 |
+
display_video_with_autoplay(video_cols[eye_type], video_base64)
|
462 |
+
|
463 |
+
# Clean up
|
464 |
+
os.remove(output_path)
|