import spaces import gradio as gr import subprocess # 🥲 subprocess.run( "pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True, ) # subprocess.run( # "pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git", # shell=True, # ) import torch from llava.model.builder import load_pretrained_model from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX from llava.conversation import conv_templates, SeparatorStyle import copy import warnings from decord import VideoReader, cpu import numpy as np import tempfile import os import shutil #warnings.filterwarnings("ignore") title = "# Demo of VLM on Crime scenes" description1 ="""The **🌋📹LLaVA-Video-7B-Qwen2** is a 7B parameter model trained on the 🌋📹LLaVA-Video-178K dataset and the LLaVA-OneVision dataset. It is [based on the **Qwen2 language model**](https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f), supporting a context window of up to 32K tokens. The model can process and interact with images, multi-images, and videos, with specific optimizations for video analysis. This model leverages the **SO400M vision backbone** for visual input and Qwen2 for language processing, making it highly efficient in multi-modal reasoning, including visual and video-based tasks. 🌋📹LLaVA-Video has larger variants of [32B](https://huggingface.co/lmms-lab/LLaVA-NeXT-Video-32B-Qwen) and [72B](https://huggingface.co/lmms-lab/LLaVA-Video-72B-Qwen2) and with a [variant](https://huggingface.co/lmms-lab/LLaVA-Video-7B-Qwen2-Video-Only) only trained on the new synthetic data For further details, please visit the [Project Page](https://github.com/LLaVA-VL/LLaVA-NeXT) or check out the corresponding [research paper](https://arxiv.org/abs/2410.02713). - **Architecture**: `LlavaQwenForCausalLM` - **Attention Heads**: 28 - **Hidden Layers**: 28 - **Hidden Size**: 3584 """ description2 =""" We have leveraged this VLM for Crime scene video description. The expected performance is achieved and we thank everyone who made this possible. """ def load_video(video_path, max_frames_num, fps=1, force_sample=False): if max_frames_num == 0: return np.zeros((1, 336, 336, 3)) vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) total_frame_num = len(vr) video_time = total_frame_num / vr.get_avg_fps() fps = round(vr.get_avg_fps()/fps) frame_idx = [i for i in range(0, len(vr), fps)] frame_time = [i/fps for i in frame_idx] if len(frame_idx) > max_frames_num or force_sample: sample_fps = max_frames_num uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int) frame_idx = uniform_sampled_frames.tolist() frame_time = [i/vr.get_avg_fps() for i in frame_idx] frame_time = ",".join([f"{i:.2f}s" for i in frame_time]) spare_frames = vr.get_batch(frame_idx).asnumpy() return spare_frames, frame_time, video_time # Load the model pretrained = "lmms-lab/LLaVA-Video-7B-Qwen2" model_name = "llava_qwen" device = "cuda" if torch.cuda.is_available() else "cpu" device_map = "auto" print("Loading model...") tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) model.eval() print("Model loaded successfully!") @spaces.GPU def process_video(video_path, question): max_frames_num = 64 video, frame_time, video_time = load_video(video_path, max_frames_num, 1, force_sample=True) video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].to(device).bfloat16() video = [video] conv_template = "qwen_1_5" time_instruction = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. These frames are located at {frame_time}. Please answer the following questions related to this video." full_question = DEFAULT_IMAGE_TOKEN + f"{time_instruction}\n{question}" conv = copy.deepcopy(conv_templates[conv_template]) conv.append_message(conv.roles[0], full_question) conv.append_message(conv.roles[1], None) prompt_question = conv.get_prompt() input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device) with torch.no_grad(): output = model.generate( input_ids, images=video, modalities=["video"], do_sample=False, temperature=0, max_new_tokens=4096, ) response = tokenizer.batch_decode(output, skip_special_tokens=True)[0].strip() return response def gradio_interface(video_file, question): if video_file is None: return "Please upload a video file." response = process_video(video_file, question) return response with gr.Blocks() as demo: gr.Markdown(title) with gr.Row(): with gr.Group(): gr.Markdown(description1) with gr.Group(): gr.Markdown(description2) with gr.Row(): with gr.Column(): video_input = gr.Video() question_input = gr.Textbox(label="🙋🏻‍♂️User Question", placeholder="Ask a question about the video... or Ask to describe the video") submit_button = gr.Button("Ask") output = gr.Textbox(label="VLM Bot") submit_button.click( fn=gradio_interface, inputs=[video_input, question_input], outputs=output ) if __name__ == "__main__": demo.launch(show_error=True, ssr_mode = False)