Spaces:
Runtime error
Runtime error
import spaces | |
import gradio as gr | |
import subprocess # π₯² | |
subprocess.run( | |
"pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True, | |
) | |
# subprocess.run( | |
# "pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git", | |
# shell=True, | |
# ) | |
import torch | |
from llava.model.builder import load_pretrained_model | |
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token | |
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX | |
from llava.conversation import conv_templates, SeparatorStyle | |
import copy | |
import warnings | |
from decord import VideoReader, cpu | |
import numpy as np | |
import tempfile | |
import os | |
import shutil | |
#warnings.filterwarnings("ignore") | |
title = "# Demo of VLM on Crime scenes" | |
description1 ="""The **ππΉLLaVA-Video-7B-Qwen2** is a 7B parameter model trained on the ππΉLLaVA-Video-178K dataset and the LLaVA-OneVision dataset. It is [based on the **Qwen2 language model**](https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f), supporting a context window of up to 32K tokens. The model can process and interact with images, multi-images, and videos, with specific optimizations for video analysis. | |
This model leverages the **SO400M vision backbone** for visual input and Qwen2 for language processing, making it highly efficient in multi-modal reasoning, including visual and video-based tasks. | |
ππΉLLaVA-Video has larger variants of [32B](https://huggingface.co/lmms-lab/LLaVA-NeXT-Video-32B-Qwen) and [72B](https://huggingface.co/lmms-lab/LLaVA-Video-72B-Qwen2) and with a [variant](https://huggingface.co/lmms-lab/LLaVA-Video-7B-Qwen2-Video-Only) only trained on the new synthetic data | |
For further details, please visit the [Project Page](https://github.com/LLaVA-VL/LLaVA-NeXT) or check out the corresponding [research paper](https://arxiv.org/abs/2410.02713). | |
- **Architecture**: `LlavaQwenForCausalLM` | |
- **Attention Heads**: 28 | |
- **Hidden Layers**: 28 | |
- **Hidden Size**: 3584 | |
""" | |
description2 =""" | |
We have leveraged this VLM for Crime scene video description. The expected performance is achieved and we thank everyone who made this possible. | |
""" | |
def load_video(video_path, max_frames_num, fps=1, force_sample=False): | |
if max_frames_num == 0: | |
return np.zeros((1, 336, 336, 3)) | |
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) | |
total_frame_num = len(vr) | |
video_time = total_frame_num / vr.get_avg_fps() | |
fps = round(vr.get_avg_fps()/fps) | |
frame_idx = [i for i in range(0, len(vr), fps)] | |
frame_time = [i/fps for i in frame_idx] | |
if len(frame_idx) > max_frames_num or force_sample: | |
sample_fps = max_frames_num | |
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int) | |
frame_idx = uniform_sampled_frames.tolist() | |
frame_time = [i/vr.get_avg_fps() for i in frame_idx] | |
frame_time = ",".join([f"{i:.2f}s" for i in frame_time]) | |
spare_frames = vr.get_batch(frame_idx).asnumpy() | |
return spare_frames, frame_time, video_time | |
# Load the model | |
pretrained = "lmms-lab/LLaVA-Video-7B-Qwen2" | |
model_name = "llava_qwen" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
device_map = "auto" | |
print("Loading model...") | |
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) | |
model.eval() | |
print("Model loaded successfully!") | |
def process_video(video_path, question): | |
max_frames_num = 64 | |
video, frame_time, video_time = load_video(video_path, max_frames_num, 1, force_sample=True) | |
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].to(device).bfloat16() | |
video = [video] | |
conv_template = "qwen_1_5" | |
time_instruction = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. These frames are located at {frame_time}. Please answer the following questions related to this video." | |
full_question = DEFAULT_IMAGE_TOKEN + f"{time_instruction}\n{question}" | |
conv = copy.deepcopy(conv_templates[conv_template]) | |
conv.append_message(conv.roles[0], full_question) | |
conv.append_message(conv.roles[1], None) | |
prompt_question = conv.get_prompt() | |
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device) | |
with torch.no_grad(): | |
output = model.generate( | |
input_ids, | |
images=video, | |
modalities=["video"], | |
do_sample=False, | |
temperature=0, | |
max_new_tokens=4096, | |
) | |
response = tokenizer.batch_decode(output, skip_special_tokens=True)[0].strip() | |
return response | |
def gradio_interface(video_file, question): | |
if video_file is None: | |
return "Please upload a video file." | |
response = process_video(video_file, question) | |
return response | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
with gr.Row(): | |
with gr.Group(): | |
gr.Markdown(description1) | |
with gr.Group(): | |
gr.Markdown(description2) | |
with gr.Row(): | |
with gr.Column(): | |
video_input = gr.Video() | |
question_input = gr.Textbox(label="ππ»ββοΈUser Question", placeholder="Ask a question about the video... or Ask to describe the video") | |
submit_button = gr.Button("Ask") | |
output = gr.Textbox(label="VLM Bot") | |
submit_button.click( | |
fn=gradio_interface, | |
inputs=[video_input, question_input], | |
outputs=output | |
) | |
if __name__ == "__main__": | |
demo.launch(show_error=True, ssr_mode = False) |