diff --git a/Video-P2P-Beta b/Video-P2P-Beta
deleted file mode 160000
index 7a8fa7a8b8d81bbba367865f47b7894cdc4efafb..0000000000000000000000000000000000000000
--- a/Video-P2P-Beta
+++ /dev/null
@@ -1 +0,0 @@
-Subproject commit 7a8fa7a8b8d81bbba367865f47b7894cdc4efafb
diff --git a/Video-P2P/.DS_Store b/Video-P2P/.DS_Store
new file mode 100644
index 0000000000000000000000000000000000000000..5008ddfcf53c02e82d7eee2e57c38e5672ef89f6
Binary files /dev/null and b/Video-P2P/.DS_Store differ
diff --git a/Video-P2P/.gitignore b/Video-P2P/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..ca7513e3b359f2d7618466be3a4be9af33824c1b
--- /dev/null
+++ b/Video-P2P/.gitignore
@@ -0,0 +1,3 @@
+*.pyc
+*.pt
+*.gif
\ No newline at end of file
diff --git a/Video-P2P/README.md b/Video-P2P/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..002d37e6240c1fd7666e58d7562af48f536f6d71
--- /dev/null
+++ b/Video-P2P/README.md
@@ -0,0 +1,99 @@
+# Video-P2P: Video Editing with Cross-attention Control
+The official implementation of [Video-P2P](https://video-p2p.github.io/).
+
+[Shaoteng Liu](https://www.shaotengliu.com/), [Yuechen Zhang](https://julianjuaner.github.io/), [Wenbo Li](https://fenglinglwb.github.io/), [Zhe Lin](https://sites.google.com/site/zhelin625/), [Jiaya Jia](https://jiaya.me/)
+
+[![Project Website](https://img.shields.io/badge/Project-Website-orange)](https://video-p2p.github.io/)
+[![arXiv](https://img.shields.io/badge/arXiv-2303.04761-b31b1b.svg)](https://arxiv.org/abs/2303.04761)
+
+![Teaser](./docs/teaser.png)
+
+## Changelog
+
+- 2023.03.20 Release Gradio Demo.
+- 2023.03.19 Release Code.
+- 2023.03.09 Paper preprint on arxiv.
+
+## Todo
+
+- [x] Release the code with 6 examples.
+- [x] Update a faster version.
+- [x] Release all data.
+- [ ] Release the Gradio Demo.
+- [ ] Release more configs and new applications.
+
+## Setup
+
+``` bash
+pip install -r requirements.txt
+```
+
+The code was tested on both Tesla V100 32GB and RTX3090 24GB.
+
+The environment is similar to [Tune-A-video](https://github.com/showlab/Tune-A-Video) and [prompt-to-prompt](https://github.com/google/prompt-to-prompt/).
+
+[xformers](https://github.com/facebookresearch/xformers) on 3090 may meet this [issue](https://github.com/bryandlee/Tune-A-Video/issues/4).
+
+## Quickstart
+
+Please replace ``pretrained_model_path'' with the path to your stable-diffusion.
+
+``` bash
+# You can minimize the tuning epochs to speed up.
+python run_tuning.py --config="configs/rabbit-jump-tune.yaml" # Tuning to do model initialization.
+
+# We develop a faster mode (1 min on V100):
+python run_videop2p.py --config="configs/rabbit-jump-p2p.yaml" --fast
+
+# The official mode (10 mins on V100, more stable):
+python run_videop2p.py --config="configs/rabbit-jump-p2p.yaml"
+```
+
+## Dataset
+
+We release our dataset [here]().
+Download them under ./data and explore your creativity!
+
+## Results
+
+
+
+ configs/rabbit-jump-p2p.yaml |
+ configs/penguin-run-p2p.yaml |
+
+
+ |
+ |
+
+
+ configs/man-motor-p2p.yaml |
+ configs/car-drive-p2p.yaml |
+
+
+ |
+ |
+
+
+ configs/tiger-forest-p2p.yaml |
+ configs/bird-forest-p2p.yaml |
+
+
+ |
+ |
+
+
+
+## Citation
+```
+@misc{liu2023videop2p,
+ author={Liu, Shaoteng and Zhang, Yuechen and Li, Wenbo and Lin, Zhe and Jia, Jiaya},
+ title={Video-P2P: Video Editing with Cross-attention Control},
+ journal={arXiv:2303.04761},
+ year={2023},
+}
+```
+
+## References
+* prompt-to-prompt: https://github.com/google/prompt-to-prompt
+* Tune-A-Video: https://github.com/showlab/Tune-A-Video
+* diffusers: https://github.com/huggingface/diffusers
\ No newline at end of file
diff --git a/Video-P2P/configs/.DS_Store b/Video-P2P/configs/.DS_Store
new file mode 100644
index 0000000000000000000000000000000000000000..5008ddfcf53c02e82d7eee2e57c38e5672ef89f6
Binary files /dev/null and b/Video-P2P/configs/.DS_Store differ
diff --git a/Video-P2P/configs/bird-forest-p2p.yaml b/Video-P2P/configs/bird-forest-p2p.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..7b92ab58ed3ff785e4368dad74e99c8275201c08
--- /dev/null
+++ b/Video-P2P/configs/bird-forest-p2p.yaml
@@ -0,0 +1,17 @@
+pretrained_model_path: "./outputs/bird-forest"
+image_path: "./data/bird_forest"
+prompt: "a bird flying in the forest"
+prompts:
+ - "a bird flying in the forest"
+ - "children drawing of a bird flying in the forest"
+eq_params:
+ words:
+ - "children"
+ - "drawing"
+ values:
+ - 5
+ - 2
+save_name: "children"
+is_word_swap: False
+cross_replace_steps: 0.8
+self_replace_steps: 0.7
\ No newline at end of file
diff --git a/Video-P2P/configs/bird-forest-tune.yaml b/Video-P2P/configs/bird-forest-tune.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..b91e054fc06e635b50246a2a5f7d358f8a477742
--- /dev/null
+++ b/Video-P2P/configs/bird-forest-tune.yaml
@@ -0,0 +1,38 @@
+pretrained_model_path: "/data/stable-diffusion/stable-diffusion-v1-5"
+output_dir: "./outputs/bird-forest"
+
+train_data:
+ video_path: "./data/bird_forest"
+ prompt: "a bird flying in the forest"
+ n_sample_frames: 8
+ width: 512
+ height: 512
+ sample_start_idx: 0
+ sample_frame_rate: 1
+
+validation_data:
+ prompts:
+ - "a bird flying in the forest"
+ video_length: 8
+ width: 512
+ height: 512
+ num_inference_steps: 50
+ guidance_scale: 12.5
+ use_inv_latent: True
+ num_inv_steps: 50
+
+learning_rate: 3e-5
+train_batch_size: 1
+max_train_steps: 500
+checkpointing_steps: 1000
+validation_steps: 600
+trainable_modules:
+ - "attn1.to_q"
+ - "attn2.to_q"
+ - "attn_temp"
+
+seed: 33
+mixed_precision: fp16
+use_8bit_adam: False
+gradient_checkpointing: True
+enable_xformers_memory_efficient_attention: True
diff --git a/Video-P2P/configs/car-drive-p2p.yaml b/Video-P2P/configs/car-drive-p2p.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..16496be6f956f6b1b90bde1e6a03cb854985f093
--- /dev/null
+++ b/Video-P2P/configs/car-drive-p2p.yaml
@@ -0,0 +1,16 @@
+pretrained_model_path: "./outputs/car-drive"
+image_path: "./data/car"
+prompt: "a car is driving on the road"
+prompts:
+ - "a car is driving on the road"
+ - "a car is driving on the railway"
+blend_word:
+ - 'road'
+ - 'railway'
+eq_params:
+ words:
+ - "railway"
+ values:
+ - 2
+save_name: "railway"
+is_word_swap: True
\ No newline at end of file
diff --git a/Video-P2P/configs/car-drive-tune.yaml b/Video-P2P/configs/car-drive-tune.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..be8b9bdad12effc45b28595181c869616e03b476
--- /dev/null
+++ b/Video-P2P/configs/car-drive-tune.yaml
@@ -0,0 +1,38 @@
+pretrained_model_path: "/data/stable-diffusion/stable-diffusion-v1-5"
+output_dir: "./outputs/car-drive"
+
+train_data:
+ video_path: "./data/car"
+ prompt: "a car is driving on the road"
+ n_sample_frames: 8
+ width: 512
+ height: 512
+ sample_start_idx: 0
+ sample_frame_rate: 1
+
+validation_data:
+ prompts:
+ - "a car is driving on the railway"
+ video_length: 8
+ width: 512
+ height: 512
+ num_inference_steps: 50
+ guidance_scale: 12.5
+ use_inv_latent: True
+ num_inv_steps: 50
+
+learning_rate: 3e-5
+train_batch_size: 1
+max_train_steps: 300
+checkpointing_steps: 1000
+validation_steps: 300
+trainable_modules:
+ - "attn1.to_q"
+ - "attn2.to_q"
+ - "attn_temp"
+
+seed: 33
+mixed_precision: fp16
+use_8bit_adam: False
+gradient_checkpointing: True
+enable_xformers_memory_efficient_attention: True
diff --git a/Video-P2P/configs/man-motor-p2p.yaml b/Video-P2P/configs/man-motor-p2p.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..773222a9963877c5e2bf7ea2194846963cb9ba83
--- /dev/null
+++ b/Video-P2P/configs/man-motor-p2p.yaml
@@ -0,0 +1,16 @@
+pretrained_model_path: "./outputs/man-motor"
+image_path: "./data/motorbike"
+prompt: "a man is driving a motorbike in the forest"
+prompts:
+ - "a man is driving a motorbike in the forest"
+ - "a Spider-Man is driving a motorbike in the forest"
+blend_word:
+ - 'man'
+ - 'Spider-Man'
+eq_params:
+ words:
+ - "Spider-Man"
+ values:
+ - 4
+save_name: "spider"
+is_word_swap: True
\ No newline at end of file
diff --git a/Video-P2P/configs/man-motor-tune.yaml b/Video-P2P/configs/man-motor-tune.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..24748f6098780987f395b297aec665c605f7d598
--- /dev/null
+++ b/Video-P2P/configs/man-motor-tune.yaml
@@ -0,0 +1,38 @@
+pretrained_model_path: "/data/stable-diffusion/stable-diffusion-v1-5"
+output_dir: "./outputs/man-motor"
+
+train_data:
+ video_path: "./data/motorbike"
+ prompt: "a man is driving a motorbike in the forest"
+ n_sample_frames: 8
+ width: 512
+ height: 512
+ sample_start_idx: 0
+ sample_frame_rate: 1
+
+validation_data:
+ prompts:
+ - "a Spider-Man is driving a motorbike in the forest"
+ video_length: 8
+ width: 512
+ height: 512
+ num_inference_steps: 50
+ guidance_scale: 12.5
+ use_inv_latent: True
+ num_inv_steps: 50
+
+learning_rate: 3e-5
+train_batch_size: 1
+max_train_steps: 500
+checkpointing_steps: 1000
+validation_steps: 500
+trainable_modules:
+ - "attn1.to_q"
+ - "attn2.to_q"
+ - "attn_temp"
+
+seed: 33
+mixed_precision: fp16
+use_8bit_adam: False
+gradient_checkpointing: True
+enable_xformers_memory_efficient_attention: True
diff --git a/Video-P2P/configs/man-surfing-tune.yaml b/Video-P2P/configs/man-surfing-tune.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..5c352c215636e5929fcb5991f0cecc269d896a78
--- /dev/null
+++ b/Video-P2P/configs/man-surfing-tune.yaml
@@ -0,0 +1,38 @@
+pretrained_model_path: "./checkpoints/stable-diffusion-v1-4"
+output_dir: "./outputs/man-surfing"
+
+train_data:
+ video_path: "data/man-surfing.mp4"
+ prompt: "a man is surfing"
+ n_sample_frames: 8
+ width: 512
+ height: 512
+ sample_start_idx: 0
+ sample_frame_rate: 1
+
+validation_data:
+ prompts:
+ - "a panda is surfing"
+ video_length: 8
+ width: 512
+ height: 512
+ num_inference_steps: 50
+ guidance_scale: 12.5
+ use_inv_latent: True
+ num_inv_steps: 50
+
+learning_rate: 3e-5
+train_batch_size: 1
+max_train_steps: 500
+checkpointing_steps: 1000
+validation_steps: 500
+trainable_modules:
+ - "attn1.to_q"
+ - "attn2.to_q"
+ - "attn_temp"
+
+seed: 33
+mixed_precision: fp16
+use_8bit_adam: False
+gradient_checkpointing: True
+enable_xformers_memory_efficient_attention: True
diff --git a/Video-P2P/configs/penguin-run-p2p.yaml b/Video-P2P/configs/penguin-run-p2p.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..f72ee8c0cb120ed7f9f82079f995b0a66d6d491b
--- /dev/null
+++ b/Video-P2P/configs/penguin-run-p2p.yaml
@@ -0,0 +1,16 @@
+pretrained_model_path: "./outputs/penguin-run"
+image_path: "./data/penguin_ice"
+prompt: "a penguin is running on the ice"
+prompts:
+ - "a penguin is running on the ice"
+ - "a crochet penguin is running on the ice"
+blend_word:
+ - 'penguin'
+ - 'penguin'
+eq_params:
+ words:
+ - "crochet"
+ values:
+ - 4
+save_name: "crochet"
+is_word_swap: False
\ No newline at end of file
diff --git a/Video-P2P/configs/penguin-run-tune.yaml b/Video-P2P/configs/penguin-run-tune.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..3d38d1f096f6b69ad0c384f360533a290a1adcfc
--- /dev/null
+++ b/Video-P2P/configs/penguin-run-tune.yaml
@@ -0,0 +1,38 @@
+pretrained_model_path: "/data/stable-diffusion/stable-diffusion-v1-5"
+output_dir: "./outputs/penguin-run"
+
+train_data:
+ video_path: "./data/penguin_ice"
+ prompt: "a penguin is running on the ice"
+ n_sample_frames: 8
+ width: 512
+ height: 512
+ sample_start_idx: 0
+ sample_frame_rate: 1
+
+validation_data:
+ prompts:
+ - "a crochet penguin is running on the ice"
+ video_length: 8
+ width: 512
+ height: 512
+ num_inference_steps: 50
+ guidance_scale: 12.5
+ use_inv_latent: True
+ num_inv_steps: 50
+
+learning_rate: 3e-5
+train_batch_size: 1
+max_train_steps: 300
+checkpointing_steps: 1000
+validation_steps: 300
+trainable_modules:
+ - "attn1.to_q"
+ - "attn2.to_q"
+ - "attn_temp"
+
+seed: 33
+mixed_precision: fp16
+use_8bit_adam: False
+gradient_checkpointing: True
+enable_xformers_memory_efficient_attention: True
diff --git a/Video-P2P/configs/rabbit-jump-p2p.yaml b/Video-P2P/configs/rabbit-jump-p2p.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..79250dd8aae50df88e2c8aad86dcfc7159e2e60f
--- /dev/null
+++ b/Video-P2P/configs/rabbit-jump-p2p.yaml
@@ -0,0 +1,16 @@
+pretrained_model_path: "./outputs/rabbit-jump"
+image_path: "./data/rabbit"
+prompt: "a rabbit is jumping on the grass"
+prompts:
+ - "a rabbit is jumping on the grass"
+ - "a origami rabbit is jumping on the grass"
+blend_word:
+ - 'rabbit'
+ - 'rabbit'
+eq_params:
+ words:
+ - "origami"
+ values:
+ - 2
+save_name: "origami"
+is_word_swap: False
\ No newline at end of file
diff --git a/Video-P2P/configs/rabbit-jump-tune.yaml b/Video-P2P/configs/rabbit-jump-tune.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..b614b8046d819bc9680b05252b551324a61e0e8d
--- /dev/null
+++ b/Video-P2P/configs/rabbit-jump-tune.yaml
@@ -0,0 +1,38 @@
+pretrained_model_path: "/data/stable-diffusion/stable-diffusion-v1-5"
+output_dir: "./outputs/rabbit-jump"
+
+train_data:
+ video_path: "./data/rabbit"
+ prompt: "a rabbit is jumping on the grass"
+ n_sample_frames: 8
+ width: 512
+ height: 512
+ sample_start_idx: 0
+ sample_frame_rate: 1
+
+validation_data:
+ prompts:
+ - "a origami rabbit is jumping on the grass"
+ video_length: 8
+ width: 512
+ height: 512
+ num_inference_steps: 50
+ guidance_scale: 12.5
+ use_inv_latent: True
+ num_inv_steps: 50
+
+learning_rate: 3e-5
+train_batch_size: 1
+max_train_steps: 500
+checkpointing_steps: 1000
+validation_steps: 500
+trainable_modules:
+ - "attn1.to_q"
+ - "attn2.to_q"
+ - "attn_temp"
+
+seed: 33
+mixed_precision: fp16
+use_8bit_adam: False
+gradient_checkpointing: True
+enable_xformers_memory_efficient_attention: True
\ No newline at end of file
diff --git a/Video-P2P/configs/tiger-forest-p2p.yaml b/Video-P2P/configs/tiger-forest-p2p.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..779d400ea2163029cfd5c29a2a5a9501b1327d08
--- /dev/null
+++ b/Video-P2P/configs/tiger-forest-p2p.yaml
@@ -0,0 +1,16 @@
+pretrained_model_path: "./outputs/tiger-forest"
+image_path: "./data/tiger"
+prompt: "a tiger is walking in the forest"
+prompts:
+ - "a tiger is walking in the forest"
+ - "a Lego tiger is walking in the forest"
+blend_word:
+ - 'tiger'
+ - 'tiger'
+eq_params:
+ words:
+ - "Lego"
+ values:
+ - 2
+save_name: "lego"
+is_word_swap: False
\ No newline at end of file
diff --git a/Video-P2P/configs/tiger-forest-tune.yaml b/Video-P2P/configs/tiger-forest-tune.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..2d2922dde7c174ae10c381323904b5cc7184339d
--- /dev/null
+++ b/Video-P2P/configs/tiger-forest-tune.yaml
@@ -0,0 +1,38 @@
+pretrained_model_path: "/data/stable-diffusion/stable-diffusion-v1-5"
+output_dir: "./outputs/tiger-forest"
+
+train_data:
+ video_path: "./data/tiger"
+ prompt: "a tiger is walking in the forest"
+ n_sample_frames: 8
+ width: 512
+ height: 512
+ sample_start_idx: 0
+ sample_frame_rate: 1
+
+validation_data:
+ prompts:
+ - "a Lego tiger is walking in the forest"
+ video_length: 8
+ width: 512
+ height: 512
+ num_inference_steps: 50
+ guidance_scale: 12.5
+ use_inv_latent: True
+ num_inv_steps: 50
+
+learning_rate: 3e-5
+train_batch_size: 1
+max_train_steps: 500
+checkpointing_steps: 1000
+validation_steps: 500
+trainable_modules:
+ - "attn1.to_q"
+ - "attn2.to_q"
+ - "attn_temp"
+
+seed: 33
+mixed_precision: fp16
+use_8bit_adam: False
+gradient_checkpointing: True
+enable_xformers_memory_efficient_attention: True
diff --git a/Video-P2P/data/.DS_Store b/Video-P2P/data/.DS_Store
new file mode 100644
index 0000000000000000000000000000000000000000..9d73c58a2a6fdf6ffdd4821c2ccf45362871baf5
Binary files /dev/null and b/Video-P2P/data/.DS_Store differ
diff --git a/Video-P2P/data/car/.DS_Store b/Video-P2P/data/car/.DS_Store
new file mode 100644
index 0000000000000000000000000000000000000000..5008ddfcf53c02e82d7eee2e57c38e5672ef89f6
Binary files /dev/null and b/Video-P2P/data/car/.DS_Store differ
diff --git a/Video-P2P/data/car/1.jpg b/Video-P2P/data/car/1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..a23b7bf38f444569168ba3df93ff13f70a3c50ca
Binary files /dev/null and b/Video-P2P/data/car/1.jpg differ
diff --git a/Video-P2P/data/car/2.jpg b/Video-P2P/data/car/2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..bad4a4b4465749a013602536f0b1e440133194ea
Binary files /dev/null and b/Video-P2P/data/car/2.jpg differ
diff --git a/Video-P2P/data/car/3.jpg b/Video-P2P/data/car/3.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..5c1fd480dce449d18b21d3773ad6ecfc055f24ac
Binary files /dev/null and b/Video-P2P/data/car/3.jpg differ
diff --git a/Video-P2P/data/car/4.jpg b/Video-P2P/data/car/4.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..1d8a953522da74f2679e71f709172e2894171aec
Binary files /dev/null and b/Video-P2P/data/car/4.jpg differ
diff --git a/Video-P2P/data/car/5.jpg b/Video-P2P/data/car/5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..b26e80259deef8d62da8f9c18592bed40271a1c3
Binary files /dev/null and b/Video-P2P/data/car/5.jpg differ
diff --git a/Video-P2P/data/car/6.jpg b/Video-P2P/data/car/6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..bb16a747d96ee17ea70655a75c6e8cbb7d4d48ed
Binary files /dev/null and b/Video-P2P/data/car/6.jpg differ
diff --git a/Video-P2P/data/car/7.jpg b/Video-P2P/data/car/7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..8e33e8d5b0c3fbc1fe2dbc31f346348b87224a9a
Binary files /dev/null and b/Video-P2P/data/car/7.jpg differ
diff --git a/Video-P2P/data/car/8.jpg b/Video-P2P/data/car/8.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..d4e3599129cce6e99d1b5fe166912865dd532678
Binary files /dev/null and b/Video-P2P/data/car/8.jpg differ
diff --git a/Video-P2P/data/motorbike/1.jpg b/Video-P2P/data/motorbike/1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..576f9b86785cd48199c2e600187787f825f532d2
Binary files /dev/null and b/Video-P2P/data/motorbike/1.jpg differ
diff --git a/Video-P2P/data/motorbike/2.jpg b/Video-P2P/data/motorbike/2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..7373af59cfedf00be49feecdd00dfe9cf265c14e
Binary files /dev/null and b/Video-P2P/data/motorbike/2.jpg differ
diff --git a/Video-P2P/data/motorbike/3.jpg b/Video-P2P/data/motorbike/3.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..dc59c351f75517a12742694a160d5813f73fd7b8
Binary files /dev/null and b/Video-P2P/data/motorbike/3.jpg differ
diff --git a/Video-P2P/data/motorbike/4.jpg b/Video-P2P/data/motorbike/4.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..e76312317bc0a35c196915210926acf4dbc39fed
Binary files /dev/null and b/Video-P2P/data/motorbike/4.jpg differ
diff --git a/Video-P2P/data/motorbike/5.jpg b/Video-P2P/data/motorbike/5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..d937146774caf8b796795c1cabbd2ba426068f78
Binary files /dev/null and b/Video-P2P/data/motorbike/5.jpg differ
diff --git a/Video-P2P/data/motorbike/6.jpg b/Video-P2P/data/motorbike/6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..d0991d2ae09b5c732a1c25acda7a6278409f7c10
Binary files /dev/null and b/Video-P2P/data/motorbike/6.jpg differ
diff --git a/Video-P2P/data/motorbike/7.jpg b/Video-P2P/data/motorbike/7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..e857f9e3f3535b098223ded490ba4b7a05ac5604
Binary files /dev/null and b/Video-P2P/data/motorbike/7.jpg differ
diff --git a/Video-P2P/data/motorbike/8.jpg b/Video-P2P/data/motorbike/8.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..1d1ec5efc6f66c05d0139a8f6b298490c6083d81
Binary files /dev/null and b/Video-P2P/data/motorbike/8.jpg differ
diff --git a/Video-P2P/data/penguin_ice/1.jpg b/Video-P2P/data/penguin_ice/1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..2d0cbc2b0f1644eb07a6fca8ad398835b29826d1
Binary files /dev/null and b/Video-P2P/data/penguin_ice/1.jpg differ
diff --git a/Video-P2P/data/penguin_ice/2.jpg b/Video-P2P/data/penguin_ice/2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..013a63c9a88594fa7a31db7e0e137f14d03b611a
Binary files /dev/null and b/Video-P2P/data/penguin_ice/2.jpg differ
diff --git a/Video-P2P/data/penguin_ice/3.jpg b/Video-P2P/data/penguin_ice/3.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..e743293b7f3c9d881e0bd8bed72201a465bd2ab3
Binary files /dev/null and b/Video-P2P/data/penguin_ice/3.jpg differ
diff --git a/Video-P2P/data/penguin_ice/4.jpg b/Video-P2P/data/penguin_ice/4.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..6b5354b4cd7f1cf32fc4916a2c1252b04431bbe4
Binary files /dev/null and b/Video-P2P/data/penguin_ice/4.jpg differ
diff --git a/Video-P2P/data/penguin_ice/5.jpg b/Video-P2P/data/penguin_ice/5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..4f63a0126c10adb69575d78057e93c683b455907
Binary files /dev/null and b/Video-P2P/data/penguin_ice/5.jpg differ
diff --git a/Video-P2P/data/penguin_ice/6.jpg b/Video-P2P/data/penguin_ice/6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..a81a617a8850493c86157f65a06b9f3ad09550e0
Binary files /dev/null and b/Video-P2P/data/penguin_ice/6.jpg differ
diff --git a/Video-P2P/data/penguin_ice/7.jpg b/Video-P2P/data/penguin_ice/7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..90f8fa773284d22a3ff1a652aed59a4331fb2bee
Binary files /dev/null and b/Video-P2P/data/penguin_ice/7.jpg differ
diff --git a/Video-P2P/data/penguin_ice/8.jpg b/Video-P2P/data/penguin_ice/8.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3a79af8157bb18f594dc2b90568cc0d24f8c7e9f
Binary files /dev/null and b/Video-P2P/data/penguin_ice/8.jpg differ
diff --git a/Video-P2P/data/rabbit/1.jpg b/Video-P2P/data/rabbit/1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..0597d1ba2b38816ac9da2af656c41c5ce0fe77e3
Binary files /dev/null and b/Video-P2P/data/rabbit/1.jpg differ
diff --git a/Video-P2P/data/rabbit/2.jpg b/Video-P2P/data/rabbit/2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..27db513bf15cef1e0678e417eb8943fd59f69af0
Binary files /dev/null and b/Video-P2P/data/rabbit/2.jpg differ
diff --git a/Video-P2P/data/rabbit/3.jpg b/Video-P2P/data/rabbit/3.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..d882e7ff058b9a2df256354fc32d9cecab18ff4e
Binary files /dev/null and b/Video-P2P/data/rabbit/3.jpg differ
diff --git a/Video-P2P/data/rabbit/4.jpg b/Video-P2P/data/rabbit/4.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..61663bbfc03afb34052c6df75dec1e5a18aaf3d6
Binary files /dev/null and b/Video-P2P/data/rabbit/4.jpg differ
diff --git a/Video-P2P/data/rabbit/5.jpg b/Video-P2P/data/rabbit/5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..d46d1b77365532531b41fe5ff236e6ec437d560e
Binary files /dev/null and b/Video-P2P/data/rabbit/5.jpg differ
diff --git a/Video-P2P/data/rabbit/6.jpg b/Video-P2P/data/rabbit/6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..adabd6eafcbe80b621ab0464693ae0e67f27a639
Binary files /dev/null and b/Video-P2P/data/rabbit/6.jpg differ
diff --git a/Video-P2P/data/rabbit/7.jpg b/Video-P2P/data/rabbit/7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..08c16fb984a244e815eaa7b7d09c4d11b620a206
Binary files /dev/null and b/Video-P2P/data/rabbit/7.jpg differ
diff --git a/Video-P2P/data/rabbit/8.jpg b/Video-P2P/data/rabbit/8.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..75f9546a75adc6dbeb40265680683fb5c85e3596
Binary files /dev/null and b/Video-P2P/data/rabbit/8.jpg differ
diff --git a/Video-P2P/ptp_utils.py b/Video-P2P/ptp_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..85725e7e7e146f6f4ea478abf9672632d9d68bee
--- /dev/null
+++ b/Video-P2P/ptp_utils.py
@@ -0,0 +1,311 @@
+# From https://github.com/google/prompt-to-prompt/:
+
+# Copyright 2022 Google LLC
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import numpy as np
+import torch
+from PIL import Image, ImageDraw, ImageFont
+import cv2
+from typing import Optional, Union, Tuple, List, Callable, Dict
+from IPython.display import display
+from tqdm.notebook import tqdm
+
+
+def text_under_image(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0)):
+ h, w, c = image.shape
+ offset = int(h * .2)
+ img = np.ones((h + offset, w, c), dtype=np.uint8) * 255
+ font = cv2.FONT_HERSHEY_SIMPLEX
+ img[:h] = image
+ textsize = cv2.getTextSize(text, font, 1, 2)[0]
+ text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2
+ cv2.putText(img, text, (text_x, text_y ), font, 1, text_color, 2)
+ return img
+
+
+def view_images(images, num_rows=1, offset_ratio=0.02):
+ if type(images) is list:
+ num_empty = len(images) % num_rows
+ elif images.ndim == 4:
+ num_empty = images.shape[0] % num_rows
+ else:
+ images = [images]
+ num_empty = 0
+
+ empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
+ images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
+ num_items = len(images)
+
+ h, w, c = images[0].shape
+ offset = int(h * offset_ratio)
+ num_cols = num_items // num_rows
+ image_ = np.ones((h * num_rows + offset * (num_rows - 1),
+ w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
+ for i in range(num_rows):
+ for j in range(num_cols):
+ image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
+ i * num_cols + j]
+
+ pil_img = Image.fromarray(image_)
+ display(pil_img)
+
+
+def diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource=False, simple=False):
+ if low_resource:
+ noise_pred_uncond = model.unet(latents, t, encoder_hidden_states=context[0])["sample"]
+ noise_prediction_text = model.unet(latents, t, encoder_hidden_states=context[1])["sample"]
+ else:
+ latents_input = torch.cat([latents] * 2)
+ noise_pred = model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
+ noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
+ if simple:
+ noise_pred[0] = noise_prediction_text[0]
+ latents = model.scheduler.step(noise_pred, t, latents)["prev_sample"]
+ # first latents: torch.Size([1, 4, 4, 64, 64])
+ latents = controller.step_callback(latents)
+ return latents
+
+
+def latent2image(vae, latents):
+ latents = 1 / 0.18215 * latents
+ image = vae.decode(latents)['sample']
+ image = (image / 2 + 0.5).clamp(0, 1)
+ image = image.cpu().permute(0, 2, 3, 1).numpy()
+ image = (image * 255).astype(np.uint8)
+ return image
+
+
+@torch.no_grad()
+def latent2image_video(vae, latents):
+ latents = 1 / 0.18215 * latents
+ latents = latents[0].permute(1, 0, 2, 3)
+ image = vae.decode(latents)['sample']
+ image = (image / 2 + 0.5).clamp(0, 1)
+ image = image.cpu().permute(0, 2, 3, 1).numpy()
+ image = (image * 255).astype(np.uint8)
+ return image
+
+
+def init_latent(latent, model, height, width, generator, batch_size):
+ if latent is None:
+ latent = torch.randn(
+ (1, model.unet.in_channels, height // 8, width // 8),
+ generator=generator,
+ )
+ latents = latent.expand(batch_size, model.unet.in_channels, height // 8, width // 8).to(model.device)
+ return latent, latents
+
+
+@torch.no_grad()
+def text2image_ldm(
+ model,
+ prompt: List[str],
+ controller,
+ num_inference_steps: int = 50,
+ guidance_scale: Optional[float] = 7.,
+ generator: Optional[torch.Generator] = None,
+ latent: Optional[torch.FloatTensor] = None,
+):
+ register_attention_control(model, controller)
+ height = width = 256
+ batch_size = len(prompt)
+
+ uncond_input = model.tokenizer([""] * batch_size, padding="max_length", max_length=77, return_tensors="pt")
+ uncond_embeddings = model.bert(uncond_input.input_ids.to(model.device))[0]
+
+ text_input = model.tokenizer(prompt, padding="max_length", max_length=77, return_tensors="pt")
+ text_embeddings = model.bert(text_input.input_ids.to(model.device))[0]
+ latent, latents = init_latent(latent, model, height, width, generator, batch_size)
+ context = torch.cat([uncond_embeddings, text_embeddings])
+
+ model.scheduler.set_timesteps(num_inference_steps)
+ for t in tqdm(model.scheduler.timesteps):
+ latents = diffusion_step(model, controller, latents, context, t, guidance_scale)
+
+ image = latent2image(model.vqvae, latents)
+
+ return image, latent
+
+
+@torch.no_grad()
+def text2image_ldm_stable(
+ model,
+ prompt: List[str],
+ controller,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 7.5,
+ generator: Optional[torch.Generator] = None,
+ latent: Optional[torch.FloatTensor] = None,
+ low_resource: bool = False,
+):
+ register_attention_control(model, controller)
+ height = width = 512
+ batch_size = len(prompt)
+
+ text_input = model.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=model.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="pt",
+ )
+ text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
+ max_length = text_input.input_ids.shape[-1]
+ uncond_input = model.tokenizer(
+ [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
+ )
+ uncond_embeddings = model.text_encoder(uncond_input.input_ids.to(model.device))[0]
+
+ context = [uncond_embeddings, text_embeddings]
+ if not low_resource:
+ context = torch.cat(context)
+
+ latent, latents = init_latent(latent, model, height, width, generator, batch_size)
+
+ # set timesteps
+ extra_set_kwargs = {"offset": 1}
+ model.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
+ for t in tqdm(model.scheduler.timesteps):
+ latents = diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource)
+
+ image = latent2image(model.vae, latents)
+
+ return image, latent
+
+
+def register_attention_control(model, controller):
+ def ca_forward(self, place_in_unet):
+ to_out = self.to_out
+ if type(to_out) is torch.nn.modules.container.ModuleList:
+ to_out = self.to_out[0]
+ else:
+ to_out = self.to_out
+
+ def forward(x, encoder_hidden_states=None, attention_mask=None):
+ context = encoder_hidden_states
+ mask = attention_mask
+ batch_size, sequence_length, dim = x.shape
+ h = self.heads
+ q = self.to_q(x)
+ is_cross = context is not None
+ context = context if is_cross else x
+ k = self.to_k(context)
+ v = self.to_v(context)
+ q = self.reshape_heads_to_batch_dim(q)
+ k = self.reshape_heads_to_batch_dim(k)
+ v = self.reshape_heads_to_batch_dim(v)
+ sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale # q: torch.Size([128, 4096, 40]); k: torch.Size([64, 77, 40])
+
+ if mask is not None:
+ mask = mask.reshape(batch_size, -1)
+ max_neg_value = -torch.finfo(sim.dtype).max
+ mask = mask[:, None, :].repeat(h, 1, 1)
+ sim.masked_fill_(~mask, max_neg_value)
+
+ attn = torch.exp(sim-torch.max(sim)) / torch.sum(torch.exp(sim-torch.max(sim)), axis=-1).unsqueeze(-1)
+ attn = controller(attn, is_cross, place_in_unet)
+ out = torch.einsum("b i j, b j d -> b i d", attn, v)
+ out = self.reshape_batch_dim_to_heads(out)
+ return to_out(out)
+
+ return forward
+
+ class DummyController:
+
+ def __call__(self, *args):
+ return args[0]
+
+ def __init__(self):
+ self.num_att_layers = 0
+
+ if controller is None:
+ controller = DummyController()
+
+ def register_recr(net_, count, place_in_unet):
+ if net_.__class__.__name__ == 'CrossAttention':
+ net_.forward = ca_forward(net_, place_in_unet)
+ return count + 1
+ elif hasattr(net_, 'children'):
+ for net__ in net_.children():
+ count = register_recr(net__, count, place_in_unet)
+ return count
+
+ cross_att_count = 0
+ sub_nets = model.unet.named_children()
+ for net in sub_nets:
+ if "down" in net[0]:
+ cross_att_count += register_recr(net[1], 0, "down")
+ elif "up" in net[0]:
+ cross_att_count += register_recr(net[1], 0, "up")
+ elif "mid" in net[0]:
+ cross_att_count += register_recr(net[1], 0, "mid")
+
+ controller.num_att_layers = cross_att_count
+
+
+def get_word_inds(text: str, word_place: int, tokenizer):
+ split_text = text.split(" ")
+ if type(word_place) is str:
+ word_place = [i for i, word in enumerate(split_text) if word_place == word]
+ elif type(word_place) is int:
+ word_place = [word_place]
+ out = []
+ if len(word_place) > 0:
+ words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
+ cur_len, ptr = 0, 0
+
+ for i in range(len(words_encode)):
+ cur_len += len(words_encode[i])
+ if ptr in word_place:
+ out.append(i + 1)
+ if cur_len >= len(split_text[ptr]):
+ ptr += 1
+ cur_len = 0
+ return np.array(out)
+
+
+def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int,
+ word_inds: Optional[torch.Tensor]=None):
+ if type(bounds) is float:
+ bounds = 0, bounds
+ start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
+ if word_inds is None:
+ word_inds = torch.arange(alpha.shape[2])
+ alpha[: start, prompt_ind, word_inds] = 0
+ alpha[start: end, prompt_ind, word_inds] = 1
+ alpha[end:, prompt_ind, word_inds] = 0
+ return alpha
+
+
+def get_time_words_attention_alpha(prompts, num_steps,
+ cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]],
+ tokenizer, max_num_words=77):
+ if type(cross_replace_steps) is not dict:
+ cross_replace_steps = {"default_": cross_replace_steps}
+ if "default_" not in cross_replace_steps:
+ cross_replace_steps["default_"] = (0., 1.)
+ alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
+ for i in range(len(prompts) - 1): # 2
+ alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], # {'default_': 0.8}
+ i)
+ for key, item in cross_replace_steps.items():
+ if key != "default_":
+ inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
+ for i, ind in enumerate(inds):
+ if len(ind) > 0:
+ alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
+ alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words)
+ return alpha_time_words
diff --git a/Video-P2P/requirements.txt b/Video-P2P/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..fbaa5d73d3c11116aa7d1703c54111f81571bc63
--- /dev/null
+++ b/Video-P2P/requirements.txt
@@ -0,0 +1,15 @@
+torch==1.12.1
+torchvision==0.13.1
+diffusers[torch]==0.11.1
+transformers>=4.25.1
+bitsandbytes==0.35.4
+decord==0.6.0
+accelerate
+tensorboard
+modelcards
+omegaconf
+einops
+imageio
+ftfy
+opencv-python
+ipywidgets
\ No newline at end of file
diff --git a/Video-P2P/run_tuning.py b/Video-P2P/run_tuning.py
new file mode 100644
index 0000000000000000000000000000000000000000..e917ec564c4519920e6e7f6cf6d064e8b4f509c3
--- /dev/null
+++ b/Video-P2P/run_tuning.py
@@ -0,0 +1,367 @@
+# From https://github.com/showlab/Tune-A-Video/blob/main/train_tuneavideo.py
+
+import argparse
+import datetime
+import logging
+import inspect
+import math
+import os
+from typing import Dict, Optional, Tuple
+from omegaconf import OmegaConf
+
+import torch
+import torch.nn.functional as F
+import torch.utils.checkpoint
+
+import diffusers
+import transformers
+from accelerate import Accelerator
+from accelerate.logging import get_logger
+from accelerate.utils import set_seed
+from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
+from diffusers.optimization import get_scheduler
+from diffusers.utils import check_min_version
+from diffusers.utils.import_utils import is_xformers_available
+from tqdm.auto import tqdm
+from transformers import CLIPTextModel, CLIPTokenizer
+
+from tuneavideo.models.unet import UNet3DConditionModel
+from tuneavideo.data.dataset import TuneAVideoDataset
+from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
+from tuneavideo.util import save_videos_grid, ddim_inversion
+from einops import rearrange
+
+
+# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
+check_min_version("0.10.0.dev0")
+
+logger = get_logger(__name__, log_level="INFO")
+
+
+def main(
+ pretrained_model_path: str,
+ output_dir: str,
+ train_data: Dict,
+ validation_data: Dict,
+ validation_steps: int = 100,
+ trainable_modules: Tuple[str] = (
+ "attn1.to_q",
+ "attn2.to_q",
+ "attn_temp",
+ ),
+ train_batch_size: int = 1,
+ max_train_steps: int = 500,
+ learning_rate: float = 3e-5,
+ scale_lr: bool = False,
+ lr_scheduler: str = "constant",
+ lr_warmup_steps: int = 0,
+ adam_beta1: float = 0.9,
+ adam_beta2: float = 0.999,
+ adam_weight_decay: float = 1e-2,
+ adam_epsilon: float = 1e-08,
+ max_grad_norm: float = 1.0,
+ gradient_accumulation_steps: int = 1,
+ gradient_checkpointing: bool = True,
+ checkpointing_steps: int = 500,
+ resume_from_checkpoint: Optional[str] = None,
+ mixed_precision: Optional[str] = "fp16",
+ use_8bit_adam: bool = False,
+ enable_xformers_memory_efficient_attention: bool = True,
+ seed: Optional[int] = None,
+):
+ *_, config = inspect.getargvalues(inspect.currentframe())
+
+ accelerator = Accelerator(
+ gradient_accumulation_steps=gradient_accumulation_steps,
+ mixed_precision=mixed_precision,
+ )
+
+ # Make one log on every process with the configuration for debugging.
+ logging.basicConfig(
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
+ datefmt="%m/%d/%Y %H:%M:%S",
+ level=logging.INFO,
+ )
+ logger.info(accelerator.state, main_process_only=False)
+ if accelerator.is_local_main_process:
+ transformers.utils.logging.set_verbosity_warning()
+ diffusers.utils.logging.set_verbosity_info()
+ else:
+ transformers.utils.logging.set_verbosity_error()
+ diffusers.utils.logging.set_verbosity_error()
+
+ # If passed along, set the training seed now.
+ if seed is not None:
+ set_seed(seed)
+
+ # Handle the output folder creation
+ if accelerator.is_main_process:
+ os.makedirs(output_dir, exist_ok=True)
+ os.makedirs(f"{output_dir}/samples", exist_ok=True)
+ os.makedirs(f"{output_dir}/inv_latents", exist_ok=True)
+ OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
+
+ # Load scheduler, tokenizer and models.
+ noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
+ tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
+ text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
+ vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
+ unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet")
+
+ # Freeze vae and text_encoder
+ vae.requires_grad_(False)
+ text_encoder.requires_grad_(False)
+
+ unet.requires_grad_(False)
+ for name, module in unet.named_modules():
+ if name.endswith(tuple(trainable_modules)):
+ for params in module.parameters():
+ params.requires_grad = True
+
+ if enable_xformers_memory_efficient_attention:
+ if is_xformers_available():
+ unet.enable_xformers_memory_efficient_attention()
+ else:
+ raise ValueError("xformers is not available. Make sure it is installed correctly")
+
+ if gradient_checkpointing:
+ unet.enable_gradient_checkpointing()
+
+ if scale_lr:
+ learning_rate = (
+ learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes
+ )
+
+ # Initialize the optimizer
+ if use_8bit_adam:
+ try:
+ import bitsandbytes as bnb
+ except ImportError:
+ raise ImportError(
+ "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
+ )
+
+ optimizer_cls = bnb.optim.AdamW8bit
+ else:
+ optimizer_cls = torch.optim.AdamW
+
+ optimizer = optimizer_cls(
+ unet.parameters(),
+ lr=learning_rate,
+ betas=(adam_beta1, adam_beta2),
+ weight_decay=adam_weight_decay,
+ eps=adam_epsilon,
+ )
+
+ # Get the training dataset
+ train_dataset = TuneAVideoDataset(**train_data)
+
+ # Preprocessing the dataset
+ train_dataset.prompt_ids = tokenizer(
+ train_dataset.prompt, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
+ ).input_ids[0]
+
+ # DataLoaders creation:
+ train_dataloader = torch.utils.data.DataLoader(
+ train_dataset, batch_size=train_batch_size
+ )
+
+ # Get the validation pipeline
+ validation_pipeline = TuneAVideoPipeline(
+ vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
+ scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
+ )
+ validation_pipeline.enable_vae_slicing()
+ ddim_inv_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder='scheduler')
+ ddim_inv_scheduler.set_timesteps(validation_data.num_inv_steps)
+
+ # Scheduler
+ lr_scheduler = get_scheduler(
+ lr_scheduler,
+ optimizer=optimizer,
+ num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
+ num_training_steps=max_train_steps * gradient_accumulation_steps,
+ )
+
+ # Prepare everything with our `accelerator`.
+ unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
+ unet, optimizer, train_dataloader, lr_scheduler
+ )
+
+ # For mixed precision training we cast the text_encoder and vae weights to half-precision
+ # as these models are only used for inference, keeping weights in full precision is not required.
+ weight_dtype = torch.float32
+ if accelerator.mixed_precision == "fp16":
+ weight_dtype = torch.float16
+ elif accelerator.mixed_precision == "bf16":
+ weight_dtype = torch.bfloat16
+
+ # Move text_encode and vae to gpu and cast to weight_dtype
+ text_encoder.to(accelerator.device, dtype=weight_dtype)
+ vae.to(accelerator.device, dtype=weight_dtype)
+
+ # We need to recalculate our total training steps as the size of the training dataloader may have changed.
+ num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
+ # Afterwards we recalculate our number of training epochs
+ num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
+
+ # We need to initialize the trackers we use, and also store our configuration.
+ # The trackers initializes automatically on the main process.
+ if accelerator.is_main_process:
+ accelerator.init_trackers("text2video-fine-tune")
+
+ # Train!
+ total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps
+
+ logger.info("***** Running training *****")
+ logger.info(f" Num examples = {len(train_dataset)}")
+ logger.info(f" Num Epochs = {num_train_epochs}")
+ logger.info(f" Instantaneous batch size per device = {train_batch_size}")
+ logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
+ logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
+ logger.info(f" Total optimization steps = {max_train_steps}")
+ global_step = 0
+ first_epoch = 0
+
+ # Potentially load in the weights and states from a previous save
+ if resume_from_checkpoint:
+ if resume_from_checkpoint != "latest":
+ path = os.path.basename(resume_from_checkpoint)
+ else:
+ # Get the most recent checkpoint
+ dirs = os.listdir(output_dir)
+ dirs = [d for d in dirs if d.startswith("checkpoint")]
+ dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
+ path = dirs[-1]
+ accelerator.print(f"Resuming from checkpoint {path}")
+ accelerator.load_state(os.path.join(output_dir, path))
+ global_step = int(path.split("-")[1])
+
+ first_epoch = global_step // num_update_steps_per_epoch
+ resume_step = global_step % num_update_steps_per_epoch
+
+ # Only show the progress bar once on each machine.
+ progress_bar = tqdm(range(global_step, max_train_steps), disable=not accelerator.is_local_main_process)
+ progress_bar.set_description("Steps")
+
+ for epoch in range(first_epoch, num_train_epochs):
+ unet.train()
+ train_loss = 0.0
+ for step, batch in enumerate(train_dataloader):
+ # Skip steps until we reach the resumed step
+ if resume_from_checkpoint and epoch == first_epoch and step < resume_step:
+ if step % gradient_accumulation_steps == 0:
+ progress_bar.update(1)
+ continue
+
+ with accelerator.accumulate(unet):
+ # Convert videos to latent space
+ pixel_values = batch["pixel_values"].to(weight_dtype)
+ video_length = pixel_values.shape[1]
+ pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
+ latents = vae.encode(pixel_values).latent_dist.sample()
+ latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
+ latents = latents * 0.18215
+
+ # Sample noise that we'll add to the latents
+ noise = torch.randn_like(latents)
+ bsz = latents.shape[0]
+ # Sample a random timestep for each video
+ timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
+ timesteps = timesteps.long()
+
+ # Add noise to the latents according to the noise magnitude at each timestep
+ # (this is the forward diffusion process)
+ noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
+
+ # Get the text embedding for conditioning
+ encoder_hidden_states = text_encoder(batch["prompt_ids"])[0]
+
+ # Get the target for loss depending on the prediction type
+ if noise_scheduler.prediction_type == "epsilon":
+ target = noise
+ elif noise_scheduler.prediction_type == "v_prediction":
+ target = noise_scheduler.get_velocity(latents, noise, timesteps)
+ else:
+ raise ValueError(f"Unknown prediction type {noise_scheduler.prediction_type}")
+
+ # Predict the noise residual and compute loss
+ model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
+ loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
+
+ # Gather the losses across all processes for logging (if we use distributed training).
+ avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean()
+ train_loss += avg_loss.item() / gradient_accumulation_steps
+
+ # Backpropagate
+ accelerator.backward(loss)
+ if accelerator.sync_gradients:
+ accelerator.clip_grad_norm_(unet.parameters(), max_grad_norm)
+ optimizer.step()
+ lr_scheduler.step()
+ optimizer.zero_grad()
+
+ # Checks if the accelerator has performed an optimization step behind the scenes
+ if accelerator.sync_gradients:
+ progress_bar.update(1)
+ global_step += 1
+ accelerator.log({"train_loss": train_loss}, step=global_step)
+ train_loss = 0.0
+
+ if global_step % checkpointing_steps == 0:
+ if accelerator.is_main_process:
+ save_path = os.path.join(output_dir, f"checkpoint-{global_step}")
+ accelerator.save_state(save_path)
+ logger.info(f"Saved state to {save_path}")
+
+ if global_step % validation_steps == 0:
+ if accelerator.is_main_process:
+ samples = []
+ generator = torch.Generator(device=latents.device)
+ generator.manual_seed(seed)
+
+ ddim_inv_latent = None
+ if validation_data.use_inv_latent:
+ inv_latents_path = os.path.join(output_dir, f"inv_latents/ddim_latent-{global_step}.pt")
+ ddim_inv_latent = ddim_inversion(
+ validation_pipeline, ddim_inv_scheduler, video_latent=latents,
+ num_inv_steps=validation_data.num_inv_steps, prompt="")[-1].to(weight_dtype)
+ torch.save(ddim_inv_latent, inv_latents_path)
+
+ for idx, prompt in enumerate(validation_data.prompts):
+ sample = validation_pipeline(prompt, generator=generator, latents=ddim_inv_latent,
+ **validation_data).videos
+ save_videos_grid(sample, f"{output_dir}/samples/sample-{global_step}/{prompt}.gif")
+ samples.append(sample)
+ samples = torch.concat(samples)
+ save_path = f"{output_dir}/samples/sample-{global_step}.gif"
+ save_videos_grid(samples, save_path)
+ logger.info(f"Saved samples to {save_path}")
+
+ logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
+ progress_bar.set_postfix(**logs)
+
+ if global_step >= max_train_steps:
+ break
+
+ # Create the pipeline using the trained modules and save it.
+ accelerator.wait_for_everyone()
+ if accelerator.is_main_process:
+ unet = accelerator.unwrap_model(unet)
+ pipeline = TuneAVideoPipeline.from_pretrained(
+ pretrained_model_path,
+ text_encoder=text_encoder,
+ vae=vae,
+ unet=unet,
+ )
+ pipeline.save_pretrained(output_dir)
+
+ accelerator.end_training()
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--config", type=str, default="./configs/tuneavideo.yaml")
+ args = parser.parse_args()
+
+ main(**OmegaConf.load(args.config))
diff --git a/Video-P2P/run_videop2p.py b/Video-P2P/run_videop2p.py
new file mode 100644
index 0000000000000000000000000000000000000000..a108e039a0b2c8dcf0e2a1e02c8e8f870f749276
--- /dev/null
+++ b/Video-P2P/run_videop2p.py
@@ -0,0 +1,664 @@
+# Adapted from https://github.com/google/prompt-to-prompt/blob/main/null_text_w_ptp.ipynb
+
+import os
+from typing import Optional, Union, Tuple, List, Callable, Dict
+from tqdm.notebook import tqdm
+import torch
+from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
+import torch.nn.functional as nnf
+import numpy as np
+import abc
+import ptp_utils
+import seq_aligner
+import shutil
+from torch.optim.adam import Adam
+from PIL import Image
+from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer
+from einops import rearrange
+
+from tuneavideo.models.unet import UNet3DConditionModel
+from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
+
+import cv2
+import argparse
+from omegaconf import OmegaConf
+
+scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
+MY_TOKEN = ''
+LOW_RESOURCE = False
+NUM_DDIM_STEPS = 50
+GUIDANCE_SCALE = 7.5
+MAX_NUM_WORDS = 77
+device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
+
+# need to adjust sometimes
+mask_th = (.3, .3)
+
+def main(
+ pretrained_model_path: str,
+ image_path: str,
+ prompt: str,
+ prompts: Tuple[str],
+ eq_params: Dict,
+ save_name: str,
+ is_word_swap: bool,
+ blend_word: Tuple[str] = None,
+ cross_replace_steps: float = 0.2,
+ self_replace_steps: float = 0.5,
+ video_len: int = 8,
+ fast: bool = False,
+ mixed_precision: str = 'fp32',
+):
+ output_folder = os.path.join(pretrained_model_path, 'results')
+ if fast:
+ save_name_1 = os.path.join(output_folder, 'inversion_fast.gif')
+ save_name_2 = os.path.join(output_folder, '{}_fast.gif'.format(save_name))
+ else:
+ save_name_1 = os.path.join(output_folder, 'inversion.gif')
+ save_name_2 = os.path.join(output_folder, '{}.gif'.format(save_name))
+ if blend_word:
+ blend_word = (((blend_word[0],), (blend_word[1],)))
+ eq_params = dict(eq_params)
+ prompts = list(prompts)
+ cross_replace_steps = {'default_': cross_replace_steps,}
+
+ weight_dtype = torch.float32
+ if mixed_precision == "fp16":
+ weight_dtype = torch.float16
+ elif mixed_precision == "bf16":
+ weight_dtype = torch.bfloat16
+
+ if not os.path.exists(output_folder):
+ os.makedirs(output_folder)
+
+ # Load the tokenizer
+ tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
+ # Load models and create wrapper for stable diffusion
+ text_encoder = CLIPTextModel.from_pretrained(
+ pretrained_model_path,
+ subfolder="text_encoder",
+ ).to(device, dtype=weight_dtype)
+ vae = AutoencoderKL.from_pretrained(
+ pretrained_model_path,
+ subfolder="vae",
+ ).to(device, dtype=weight_dtype)
+ unet = UNet3DConditionModel.from_pretrained(
+ pretrained_model_path, subfolder="unet"
+ ).to(device)
+ ldm_stable = TuneAVideoPipeline(
+ vae=vae,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ scheduler=scheduler,
+ ).to(device)
+
+ try:
+ ldm_stable.disable_xformers_memory_efficient_attention()
+ except AttributeError:
+ print("Attribute disable_xformers_memory_efficient_attention() is missing")
+ tokenizer = ldm_stable.tokenizer # Tokenizer of class: [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer)
+ # A tokenizer breaks a stream of text into tokens, usually by looking for whitespace (tabs, spaces, new lines).
+
+ class LocalBlend:
+
+ def get_mask(self, maps, alpha, use_pool):
+ k = 1
+ maps = (maps * alpha).sum(-1).mean(2)
+ if use_pool:
+ maps = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 +1), (1, 1), padding=(k, k))
+ mask = nnf.interpolate(maps, size=(x_t.shape[3:]))
+ mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
+ mask = mask.gt(self.th[1-int(use_pool)])
+ mask = mask[:1] + mask
+ return mask
+
+ def __call__(self, x_t, attention_store, step):
+ self.counter += 1
+ if self.counter > self.start_blend:
+ maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
+ maps = [item.reshape(self.alpha_layers.shape[0], -1, 8, 16, 16, MAX_NUM_WORDS) for item in maps]
+ maps = torch.cat(maps, dim=2)
+ mask = self.get_mask(maps, self.alpha_layers, True)
+ if self.substruct_layers is not None:
+ maps_sub = ~self.get_mask(maps, self.substruct_layers, False)
+ mask = mask * maps_sub
+ mask = mask.float()
+ mask = mask.reshape(-1, 1, mask.shape[-3], mask.shape[-2], mask.shape[-1])
+ x_t = x_t[:1] + mask * (x_t - x_t[:1])
+ return x_t
+
+ def __init__(self, prompts: List[str], words: [List[List[str]]], substruct_words=None, start_blend=0.2, th=(.3, .3)):
+ alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS)
+ for i, (prompt, words_) in enumerate(zip(prompts, words)):
+ if type(words_) is str:
+ words_ = [words_]
+ for word in words_:
+ ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
+ alpha_layers[i, :, :, :, :, ind] = 1
+
+ if substruct_words is not None:
+ substruct_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS)
+ for i, (prompt, words_) in enumerate(zip(prompts, substruct_words)):
+ if type(words_) is str:
+ words_ = [words_]
+ for word in words_:
+ ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
+ substruct_layers[i, :, :, :, :, ind] = 1
+ self.substruct_layers = substruct_layers.to(device)
+ else:
+ self.substruct_layers = None
+ self.alpha_layers = alpha_layers.to(device)
+ self.start_blend = int(start_blend * NUM_DDIM_STEPS)
+ self.counter = 0
+ self.th=th
+
+
+ class EmptyControl:
+
+
+ def step_callback(self, x_t):
+ return x_t
+
+ def between_steps(self):
+ return
+
+ def __call__(self, attn, is_cross: bool, place_in_unet: str):
+ return attn
+
+
+ class AttentionControl(abc.ABC):
+
+ def step_callback(self, x_t):
+ return x_t
+
+ def between_steps(self):
+ return
+
+ @property
+ def num_uncond_att_layers(self):
+ return self.num_att_layers if LOW_RESOURCE else 0
+
+ @abc.abstractmethod
+ def forward (self, attn, is_cross: bool, place_in_unet: str):
+ raise NotImplementedError
+
+ def __call__(self, attn, is_cross: bool, place_in_unet: str):
+ if self.cur_att_layer >= self.num_uncond_att_layers:
+ if LOW_RESOURCE:
+ attn = self.forward(attn, is_cross, place_in_unet)
+ else:
+ h = attn.shape[0]
+ attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
+ self.cur_att_layer += 1
+ if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
+ self.cur_att_layer = 0
+ self.cur_step += 1
+ self.between_steps()
+ return attn
+
+ def reset(self):
+ self.cur_step = 0
+ self.cur_att_layer = 0
+
+ def __init__(self):
+ self.cur_step = 0
+ self.num_att_layers = -1
+ self.cur_att_layer = 0
+
+ class SpatialReplace(EmptyControl):
+
+ def step_callback(self, x_t):
+ if self.cur_step < self.stop_inject:
+ b = x_t.shape[0]
+ x_t = x_t[:1].expand(b, *x_t.shape[1:])
+ return x_t
+
+ def __init__(self, stop_inject: float):
+ super(SpatialReplace, self).__init__()
+ self.stop_inject = int((1 - stop_inject) * NUM_DDIM_STEPS)
+
+
+ class AttentionStore(AttentionControl):
+
+ @staticmethod
+ def get_empty_store():
+ return {"down_cross": [], "mid_cross": [], "up_cross": [],
+ "down_self": [], "mid_self": [], "up_self": []}
+
+ def forward(self, attn, is_cross: bool, place_in_unet: str):
+ key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
+ if attn.shape[1] <= 32 ** 2:
+ self.step_store[key].append(attn)
+ return attn
+
+ def between_steps(self):
+ if len(self.attention_store) == 0:
+ self.attention_store = self.step_store
+ else:
+ for key in self.attention_store:
+ for i in range(len(self.attention_store[key])):
+ self.attention_store[key][i] += self.step_store[key][i]
+ self.step_store = self.get_empty_store()
+
+ def get_average_attention(self):
+ average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
+ return average_attention
+
+
+ def reset(self):
+ super(AttentionStore, self).reset()
+ self.step_store = self.get_empty_store()
+ self.attention_store = {}
+
+ def __init__(self):
+ super(AttentionStore, self).__init__()
+ self.step_store = self.get_empty_store()
+ self.attention_store = {}
+
+
+ class AttentionControlEdit(AttentionStore, abc.ABC):
+
+ def step_callback(self, x_t):
+ if self.local_blend is not None:
+ x_t = self.local_blend(x_t, self.attention_store, self.cur_step)
+ return x_t
+
+ def replace_self_attention(self, attn_base, att_replace, place_in_unet):
+ if att_replace.shape[2] <= 32 ** 2:
+ attn_base = attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
+ return attn_base
+ else:
+ return att_replace
+
+ @abc.abstractmethod
+ def replace_cross_attention(self, attn_base, att_replace):
+ raise NotImplementedError
+
+ def forward(self, attn, is_cross: bool, place_in_unet: str):
+ super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
+ if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
+ h = attn.shape[0] // (self.batch_size)
+ attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
+ attn_base, attn_repalce = attn[0], attn[1:]
+ if is_cross:
+ alpha_words = self.cross_replace_alpha[self.cur_step]
+ attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce
+ attn[1:] = attn_repalce_new
+ else:
+ attn[1:] = self.replace_self_attention(attn_base, attn_repalce, place_in_unet)
+ attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
+ return attn
+
+ def __init__(self, prompts, num_steps: int,
+ cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
+ self_replace_steps: Union[float, Tuple[float, float]],
+ local_blend: Optional[LocalBlend]):
+ super(AttentionControlEdit, self).__init__()
+ self.batch_size = len(prompts)
+ self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, tokenizer).to(device)
+ if type(self_replace_steps) is float:
+ self_replace_steps = 0, self_replace_steps
+ self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
+ self.local_blend = local_blend
+
+ class AttentionReplace(AttentionControlEdit):
+
+ def replace_cross_attention(self, attn_base, att_replace):
+ return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper)
+
+ def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
+ local_blend: Optional[LocalBlend] = None):
+ super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
+ self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device)
+
+
+ class AttentionRefine(AttentionControlEdit):
+
+ def replace_cross_attention(self, attn_base, att_replace):
+ attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
+ attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
+ return attn_replace
+
+ def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
+ local_blend: Optional[LocalBlend] = None):
+ super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
+ self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer)
+ self.mapper, alphas = self.mapper.to(device), alphas.to(device)
+ self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])
+
+
+ class AttentionReweight(AttentionControlEdit):
+
+ def replace_cross_attention(self, attn_base, att_replace):
+ if self.prev_controller is not None:
+ attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace)
+ attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :]
+ return attn_replace
+
+ def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, equalizer,
+ local_blend: Optional[LocalBlend] = None, controller: Optional[AttentionControlEdit] = None):
+ super(AttentionReweight, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
+ self.equalizer = equalizer.to(device)
+ self.prev_controller = controller
+
+
+ def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float],
+ Tuple[float, ...]]):
+ if type(word_select) is int or type(word_select) is str:
+ word_select = (word_select,)
+ equalizer = torch.ones(1, 77)
+
+ for word, val in zip(word_select, values):
+ inds = ptp_utils.get_word_inds(text, word, tokenizer)
+ equalizer[:, inds] = val
+ return equalizer
+
+ def aggregate_attention(attention_store: AttentionStore, res: int, from_where: List[str], is_cross: bool, select: int):
+ out = []
+ attention_maps = attention_store.get_average_attention()
+ num_pixels = res ** 2
+ for location in from_where:
+ for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
+ if item.shape[1] == num_pixels:
+ cross_maps = item.reshape(8, 8, res, res, item.shape[-1])
+ out.append(cross_maps)
+ out = torch.cat(out, dim=1)
+ out = out.sum(1) / out.shape[1]
+ return out.cpu()
+
+
+ def make_controller(prompts: List[str], is_replace_controller: bool, cross_replace_steps: Dict[str, float], self_replace_steps: float, blend_words=None, equilizer_params=None, mask_th=(.3,.3)) -> AttentionControlEdit:
+ if blend_words is None:
+ lb = None
+ else:
+ lb = LocalBlend(prompts, blend_word, th=mask_th)
+ if is_replace_controller:
+ controller = AttentionReplace(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb)
+ else:
+ controller = AttentionRefine(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb)
+ if equilizer_params is not None:
+ eq = get_equalizer(prompts[1], equilizer_params["words"], equilizer_params["values"])
+ controller = AttentionReweight(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps,
+ self_replace_steps=self_replace_steps, equalizer=eq, local_blend=lb, controller=controller)
+ return controller
+
+
+ def load_512_seq(image_path, left=0, right=0, top=0, bottom=0, n_sample_frame=video_len, sampling_rate=1):
+ images = []
+ for file in sorted(os.listdir(image_path)):
+ images.append(file)
+ n_images = len(images)
+ sequence_length = (n_sample_frame - 1) * sampling_rate + 1
+ if n_images < sequence_length:
+ raise ValueError
+ frames = []
+ for index in range(n_sample_frame):
+ p = os.path.join(image_path, images[index])
+ image = np.array(Image.open(p).convert("RGB"))
+ h, w, c = image.shape
+ left = min(left, w-1)
+ right = min(right, w - left - 1)
+ top = min(top, h - left - 1)
+ bottom = min(bottom, h - top - 1)
+ image = image[top:h-bottom, left:w-right]
+ h, w, c = image.shape
+ if h < w:
+ offset = (w - h) // 2
+ image = image[:, offset:offset + h]
+ elif w < h:
+ offset = (h - w) // 2
+ image = image[offset:offset + w]
+ image = np.array(Image.fromarray(image).resize((512, 512)))
+ frames.append(image)
+ return np.stack(frames)
+
+
+ class NullInversion:
+
+ def prev_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
+ prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
+ alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
+ alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
+ beta_prod_t = 1 - alpha_prod_t
+ pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
+ pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_output
+ prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
+ return prev_sample
+
+ def next_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
+ timestep, next_timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep
+ alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
+ alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep]
+ beta_prod_t = 1 - alpha_prod_t
+ next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
+ next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
+ next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
+ return next_sample
+
+ def get_noise_pred_single(self, latents, t, context):
+ noise_pred = self.model.unet(latents, t, encoder_hidden_states=context)["sample"]
+ return noise_pred
+
+ def get_noise_pred(self, latents, t, is_forward=True, context=None):
+ latents_input = torch.cat([latents] * 2)
+ if context is None:
+ context = self.context
+ guidance_scale = 1 if is_forward else GUIDANCE_SCALE
+ noise_pred = self.model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
+ noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
+ if is_forward:
+ latents = self.next_step(noise_pred, t, latents)
+ else:
+ latents = self.prev_step(noise_pred, t, latents)
+ return latents
+
+ @torch.no_grad()
+ def latent2image(self, latents, return_type='np'):
+ latents = 1 / 0.18215 * latents.detach()
+ image = self.model.vae.decode(latents)['sample']
+ if return_type == 'np':
+ image = (image / 2 + 0.5).clamp(0, 1)
+ image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
+ image = (image * 255).astype(np.uint8)
+ return image
+
+ @torch.no_grad()
+ def latent2image_video(self, latents, return_type='np'):
+ latents = 1 / 0.18215 * latents.detach()
+ latents = latents[0].permute(1, 0, 2, 3)
+ image = self.model.vae.decode(latents)['sample']
+ if return_type == 'np':
+ image = (image / 2 + 0.5).clamp(0, 1)
+ image = image.cpu().permute(0, 2, 3, 1).numpy()
+ image = (image * 255).astype(np.uint8)
+ return image
+
+ @torch.no_grad()
+ def image2latent(self, image):
+ with torch.no_grad():
+ if type(image) is Image:
+ image = np.array(image)
+ if type(image) is torch.Tensor and image.dim() == 4:
+ latents = image
+ else:
+ image = torch.from_numpy(image).float() / 127.5 - 1
+ image = image.permute(2, 0, 1).unsqueeze(0).to(device, dtype=weight_dtype)
+ latents = self.model.vae.encode(image)['latent_dist'].mean
+ latents = latents * 0.18215
+ return latents
+
+ @torch.no_grad()
+ def image2latent_video(self, image):
+ with torch.no_grad():
+ image = torch.from_numpy(image).float() / 127.5 - 1
+ image = image.permute(0, 3, 1, 2).to(device).to(device, dtype=weight_dtype)
+ latents = self.model.vae.encode(image)['latent_dist'].mean
+ latents = rearrange(latents, "(b f) c h w -> b c f h w", b=1)
+ latents = latents * 0.18215
+ return latents
+
+ @torch.no_grad()
+ def init_prompt(self, prompt: str):
+ uncond_input = self.model.tokenizer(
+ [""], padding="max_length", max_length=self.model.tokenizer.model_max_length,
+ return_tensors="pt"
+ )
+ uncond_embeddings = self.model.text_encoder(uncond_input.input_ids.to(self.model.device))[0]
+ text_input = self.model.tokenizer(
+ [prompt],
+ padding="max_length",
+ max_length=self.model.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="pt",
+ )
+ text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0]
+ self.context = torch.cat([uncond_embeddings, text_embeddings])
+ self.prompt = prompt
+
+ @torch.no_grad()
+ def ddim_loop(self, latent):
+ uncond_embeddings, cond_embeddings = self.context.chunk(2)
+ all_latent = [latent]
+ latent = latent.clone().detach()
+ for i in range(NUM_DDIM_STEPS):
+ t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1]
+ noise_pred = self.get_noise_pred_single(latent, t, cond_embeddings)
+ latent = self.next_step(noise_pred, t, latent)
+ all_latent.append(latent)
+ return all_latent
+
+ @property
+ def scheduler(self):
+ return self.model.scheduler
+
+ @torch.no_grad()
+ def ddim_inversion(self, image):
+ latent = self.image2latent_video(image)
+ image_rec = self.latent2image_video(latent)
+ ddim_latents = self.ddim_loop(latent)
+ return image_rec, ddim_latents
+
+ def null_optimization(self, latents, num_inner_steps, epsilon):
+ uncond_embeddings, cond_embeddings = self.context.chunk(2)
+ uncond_embeddings_list = []
+ latent_cur = latents[-1]
+ bar = tqdm(total=num_inner_steps * NUM_DDIM_STEPS)
+ for i in range(NUM_DDIM_STEPS):
+ uncond_embeddings = uncond_embeddings.clone().detach()
+ uncond_embeddings.requires_grad = True
+ optimizer = Adam([uncond_embeddings], lr=1e-2 * (1. - i / 100.))
+ latent_prev = latents[len(latents) - i - 2]
+ t = self.model.scheduler.timesteps[i]
+ with torch.no_grad():
+ noise_pred_cond = self.get_noise_pred_single(latent_cur, t, cond_embeddings)
+ for j in range(num_inner_steps):
+ noise_pred_uncond = self.get_noise_pred_single(latent_cur, t, uncond_embeddings)
+ noise_pred = noise_pred_uncond + GUIDANCE_SCALE * (noise_pred_cond - noise_pred_uncond)
+ latents_prev_rec = self.prev_step(noise_pred, t, latent_cur)
+ loss = nnf.mse_loss(latents_prev_rec, latent_prev)
+ optimizer.zero_grad()
+ loss.backward()
+ optimizer.step()
+ loss_item = loss.item()
+ bar.update()
+ if loss_item < epsilon + i * 2e-5:
+ break
+ for j in range(j + 1, num_inner_steps):
+ bar.update()
+ uncond_embeddings_list.append(uncond_embeddings[:1].detach())
+ with torch.no_grad():
+ context = torch.cat([uncond_embeddings, cond_embeddings])
+ latent_cur = self.get_noise_pred(latent_cur, t, False, context)
+ bar.close()
+ return uncond_embeddings_list
+
+ def invert(self, image_path: str, prompt: str, offsets=(0,0,0,0), num_inner_steps=10, early_stop_epsilon=1e-5, verbose=False):
+ self.init_prompt(prompt)
+ ptp_utils.register_attention_control(self.model, None)
+ image_gt = load_512_seq(image_path, *offsets)
+ if verbose:
+ print("DDIM inversion...")
+ image_rec, ddim_latents = self.ddim_inversion(image_gt)
+ if verbose:
+ print("Null-text optimization...")
+ uncond_embeddings = self.null_optimization(ddim_latents, num_inner_steps, early_stop_epsilon)
+ return (image_gt, image_rec), ddim_latents[-1], uncond_embeddings
+
+ def invert_(self, image_path: str, prompt: str, offsets=(0,0,0,0), num_inner_steps=10, early_stop_epsilon=1e-5, verbose=False):
+ self.init_prompt(prompt)
+ ptp_utils.register_attention_control(self.model, None)
+ image_gt = load_512_seq(image_path, *offsets)
+ if verbose:
+ print("DDIM inversion...")
+ image_rec, ddim_latents = self.ddim_inversion(image_gt)
+ if verbose:
+ print("Null-text optimization...")
+ return (image_gt, image_rec), ddim_latents[-1], None
+
+ def __init__(self, model):
+ scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False,
+ set_alpha_to_one=False)
+ self.model = model
+ self.tokenizer = self.model.tokenizer
+ self.model.scheduler.set_timesteps(NUM_DDIM_STEPS)
+ self.prompt = None
+ self.context = None
+
+ null_inversion = NullInversion(ldm_stable)
+
+ ###############
+ # Custom APIs:
+
+ ldm_stable.enable_xformers_memory_efficient_attention()
+
+ if fast:
+ (image_gt, image_enc), x_t, uncond_embeddings = null_inversion.invert_(image_path, prompt, offsets=(0,0,0,0), verbose=True)
+ else:
+ (image_gt, image_enc), x_t, uncond_embeddings = null_inversion.invert(image_path, prompt, offsets=(0,0,0,0), verbose=True)
+
+ ##### load uncond #####
+ # uncond_embeddings_load = np.load(uncond_embeddings_path)
+ # uncond_embeddings = []
+ # for i in range(uncond_embeddings_load.shape[0]):
+ # uncond_embeddings.append(torch.from_numpy(uncond_embeddings_load[i]).to(device))
+ #######################
+
+ ##### save uncond #####
+ # uncond_embeddings = torch.cat(uncond_embeddings)
+ # uncond_embeddings = uncond_embeddings.cpu().numpy()
+ #######################
+
+ print("Start Video-P2P!")
+ controller = make_controller(prompts, is_word_swap, cross_replace_steps, self_replace_steps, blend_word, eq_params, mask_th=mask_th)
+ ptp_utils.register_attention_control(ldm_stable, controller)
+ generator = torch.Generator(device=device)
+ with torch.no_grad():
+ sequence = ldm_stable(
+ prompts,
+ generator=generator,
+ latents=x_t,
+ uncond_embeddings_pre=uncond_embeddings,
+ controller = controller,
+ video_length=video_len,
+ fast=fast,
+ ).videos
+ sequence1 = rearrange(sequence[0], "c t h w -> t h w c")
+ sequence2 = rearrange(sequence[1], "c t h w -> t h w c")
+ inversion = []
+ videop2p = []
+ for i in range(sequence1.shape[0]):
+ inversion.append( Image.fromarray((sequence1[i] * 255).numpy().astype(np.uint8)) )
+ videop2p.append( Image.fromarray((sequence2[i] * 255).numpy().astype(np.uint8)) )
+
+ inversion[0].save(save_name_1, save_all=True, append_images=inversion[1:], optimize=False, loop=0, duration=250)
+ videop2p[0].save(save_name_2, save_all=True, append_images=videop2p[1:], optimize=False, loop=0, duration=250)
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--config", type=str, default="./configs/videop2p.yaml")
+ parser.add_argument("--fast", action='store_true')
+ args = parser.parse_args()
+
+ main(**OmegaConf.load(args.config), fast=args.fast)
diff --git a/Video-P2P/script.sh b/Video-P2P/script.sh
new file mode 100644
index 0000000000000000000000000000000000000000..b6c298ed8dd4cd84b732b38825ed2f077f1f1c29
--- /dev/null
+++ b/Video-P2P/script.sh
@@ -0,0 +1,23 @@
+# python run_tuning.py --config="configs/rabbit-jump-tune.yaml"
+
+# python run_videop2p.py --config="configs/rabbit-jump-p2p.yaml" --fast
+
+# python run_tuning.py --config="configs/man-motor-tune.yaml"
+
+# python run_videop2p.py --config="configs/man-motor-p2p.yaml"
+
+# python run_tuning.py --config="configs/penguin-run-tune.yaml"
+
+# python run_videop2p.py --config="configs/penguin-run-p2p.yaml"
+
+# python run_tuning.py --config="configs/tiger-forest-tune.yaml"
+
+# python run_videop2p.py --config="configs/tiger-forest-p2p.yaml" --fast
+
+# python run_tuning.py --config="configs/car-drive-tune.yaml"
+
+python run_videop2p.py --config="configs/car-drive-p2p.yaml" --fast
+
+python run_tuning.py --config="configs/bird-forest-tune.yaml"
+
+python run_videop2p.py --config="configs/bird-forest-p2p.yaml" --fast
\ No newline at end of file
diff --git a/Video-P2P/seq_aligner.py b/Video-P2P/seq_aligner.py
new file mode 100644
index 0000000000000000000000000000000000000000..0f93bd3189607b38bf2f905498b0e0944f36ee5e
--- /dev/null
+++ b/Video-P2P/seq_aligner.py
@@ -0,0 +1,198 @@
+# From https://github.com/google/prompt-to-prompt/:
+
+# Copyright 2022 Google LLC
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import torch
+import numpy as np
+
+
+class ScoreParams:
+
+ def __init__(self, gap, match, mismatch):
+ self.gap = gap
+ self.match = match
+ self.mismatch = mismatch
+
+ def mis_match_char(self, x, y):
+ if x != y:
+ return self.mismatch
+ else:
+ return self.match
+
+
+def get_matrix(size_x, size_y, gap):
+ matrix = []
+ for i in range(len(size_x) + 1):
+ sub_matrix = []
+ for j in range(len(size_y) + 1):
+ sub_matrix.append(0)
+ matrix.append(sub_matrix)
+ for j in range(1, len(size_y) + 1):
+ matrix[0][j] = j*gap
+ for i in range(1, len(size_x) + 1):
+ matrix[i][0] = i*gap
+ return matrix
+
+
+def get_matrix(size_x, size_y, gap):
+ matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32)
+ matrix[0, 1:] = (np.arange(size_y) + 1) * gap
+ matrix[1:, 0] = (np.arange(size_x) + 1) * gap
+ return matrix
+
+
+def get_traceback_matrix(size_x, size_y):
+ matrix = np.zeros((size_x + 1, size_y +1), dtype=np.int32)
+ matrix[0, 1:] = 1
+ matrix[1:, 0] = 2
+ matrix[0, 0] = 4
+ return matrix
+
+
+def global_align(x, y, score):
+ matrix = get_matrix(len(x), len(y), score.gap)
+ trace_back = get_traceback_matrix(len(x), len(y))
+ for i in range(1, len(x) + 1):
+ for j in range(1, len(y) + 1):
+ left = matrix[i, j - 1] + score.gap
+ up = matrix[i - 1, j] + score.gap
+ diag = matrix[i - 1, j - 1] + score.mis_match_char(x[i - 1], y[j - 1])
+ matrix[i, j] = max(left, up, diag)
+ if matrix[i, j] == left:
+ trace_back[i, j] = 1
+ elif matrix[i, j] == up:
+ trace_back[i, j] = 2
+ else:
+ trace_back[i, j] = 3
+ return matrix, trace_back
+
+
+def get_aligned_sequences(x, y, trace_back):
+ x_seq = []
+ y_seq = []
+ i = len(x)
+ j = len(y)
+ mapper_y_to_x = []
+ while i > 0 or j > 0:
+ if trace_back[i, j] == 3:
+ x_seq.append(x[i-1])
+ y_seq.append(y[j-1])
+ i = i-1
+ j = j-1
+ mapper_y_to_x.append((j, i))
+ elif trace_back[i][j] == 1:
+ x_seq.append('-')
+ y_seq.append(y[j-1])
+ j = j-1
+ mapper_y_to_x.append((j, -1))
+ elif trace_back[i][j] == 2:
+ x_seq.append(x[i-1])
+ y_seq.append('-')
+ i = i-1
+ elif trace_back[i][j] == 4:
+ break
+ mapper_y_to_x.reverse()
+ return x_seq, y_seq, torch.tensor(mapper_y_to_x, dtype=torch.int64)
+
+
+def get_mapper(x: str, y: str, tokenizer, max_len=77):
+ x_seq = tokenizer.encode(x)
+ y_seq = tokenizer.encode(y)
+ score = ScoreParams(0, 1, -1)
+ matrix, trace_back = global_align(x_seq, y_seq, score)
+ mapper_base = get_aligned_sequences(x_seq, y_seq, trace_back)[-1]
+ alphas = torch.ones(max_len)
+ alphas[: mapper_base.shape[0]] = mapper_base[:, 1].ne(-1).float()
+ mapper = torch.zeros(max_len, dtype=torch.int64)
+ mapper[:mapper_base.shape[0]] = mapper_base[:, 1]
+ mapper[mapper_base.shape[0]:] = len(y_seq) + torch.arange(max_len - len(y_seq))
+ return mapper, alphas
+
+
+def get_refinement_mapper(prompts, tokenizer, max_len=77):
+ x_seq = prompts[0]
+ mappers, alphas = [], []
+ for i in range(1, len(prompts)):
+ mapper, alpha = get_mapper(x_seq, prompts[i], tokenizer, max_len)
+ mappers.append(mapper)
+ alphas.append(alpha)
+ return torch.stack(mappers), torch.stack(alphas)
+
+
+def get_word_inds(text: str, word_place: int, tokenizer):
+ split_text = text.split(" ")
+ if type(word_place) is str:
+ word_place = [i for i, word in enumerate(split_text) if word_place == word]
+ elif type(word_place) is int:
+ word_place = [word_place]
+ out = []
+ if len(word_place) > 0:
+ words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
+ cur_len, ptr = 0, 0
+
+ for i in range(len(words_encode)):
+ cur_len += len(words_encode[i])
+ if ptr in word_place:
+ out.append(i + 1)
+ if cur_len >= len(split_text[ptr]):
+ ptr += 1
+ cur_len = 0
+ return np.array(out)
+
+
+def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77):
+ words_x = x.split(' ')
+ words_y = y.split(' ')
+ if len(words_x) != len(words_y):
+ raise ValueError(f"attention replacement edit can only be applied on prompts with the same length"
+ f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words.")
+ inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]]
+ inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace]
+ inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace]
+ mapper = np.zeros((max_len, max_len))
+ i = j = 0
+ cur_inds = 0
+ while i < max_len and j < max_len:
+ if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i:
+ inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds]
+ if len(inds_source_) == len(inds_target_):
+ mapper[inds_source_, inds_target_] = 1
+ else:
+ ratio = 1 / len(inds_target_)
+ for i_t in inds_target_:
+ mapper[inds_source_, i_t] = ratio
+ cur_inds += 1
+ i += len(inds_source_)
+ j += len(inds_target_)
+ elif cur_inds < len(inds_source):
+ mapper[i, j] = 1
+ i += 1
+ j += 1
+ else:
+ mapper[j, j] = 1
+ i += 1
+ j += 1
+
+ return torch.from_numpy(mapper).float()
+
+
+
+def get_replacement_mapper(prompts, tokenizer, max_len=77):
+ x_seq = prompts[0]
+ mappers = []
+ for i in range(1, len(prompts)):
+ mapper = get_replacement_mapper_(x_seq, prompts[i], tokenizer, max_len)
+ mappers.append(mapper)
+ return torch.stack(mappers)
+
diff --git a/Video-P2P/tuneavideo/data/dataset.py b/Video-P2P/tuneavideo/data/dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..199f246633d1a6ba2d106bbb98815a3d8fb9eaad
--- /dev/null
+++ b/Video-P2P/tuneavideo/data/dataset.py
@@ -0,0 +1,57 @@
+import decord
+decord.bridge.set_bridge('torch')
+
+from torch.utils.data import Dataset
+from einops import rearrange
+import os
+from PIL import Image
+import numpy as np
+
+class TuneAVideoDataset(Dataset):
+ def __init__(
+ self,
+ video_path: str,
+ prompt: str,
+ width: int = 512,
+ height: int = 512,
+ n_sample_frames: int = 8,
+ sample_start_idx: int = 0,
+ sample_frame_rate: int = 1,
+ ):
+ self.video_path = video_path
+ self.prompt = prompt
+ self.prompt_ids = None
+ self.uncond_prompt_ids = None
+
+ self.width = width
+ self.height = height
+ self.n_sample_frames = n_sample_frames
+ self.sample_start_idx = sample_start_idx
+ self.sample_frame_rate = sample_frame_rate
+
+ if 'mp4' not in self.video_path:
+ self.images = []
+ for file in sorted(os.listdir(self.video_path), key=lambda x: int(x[:-4])):
+ if file.endswith('jpg'):
+ self.images.append(np.asarray(Image.open(os.path.join(self.video_path, file)).convert('RGB').resize((self.width, self.height))))
+ self.images = np.stack(self.images)
+
+ def __len__(self):
+ return 1
+
+ def __getitem__(self, index):
+ # load and sample video frames
+ if 'mp4' in self.video_path:
+ vr = decord.VideoReader(self.video_path, width=self.width, height=self.height)
+ sample_index = list(range(self.sample_start_idx, len(vr), self.sample_frame_rate))[:self.n_sample_frames]
+ video = vr.get_batch(sample_index)
+ else:
+ video = self.images[:self.n_sample_frames]
+ video = rearrange(video, "f h w c -> f c h w")
+
+ example = {
+ "pixel_values": (video / 127.5 - 1.0),
+ "prompt_ids": self.prompt_ids,
+ }
+
+ return example
diff --git a/Video-P2P/tuneavideo/models/attention.py b/Video-P2P/tuneavideo/models/attention.py
new file mode 100644
index 0000000000000000000000000000000000000000..a90347820b79efb30c1a94fc85111ea739e12e56
--- /dev/null
+++ b/Video-P2P/tuneavideo/models/attention.py
@@ -0,0 +1,329 @@
+# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
+# https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/models/attention.py
+
+from dataclasses import dataclass
+from typing import Optional
+
+import torch
+import torch.nn.functional as F
+from torch import nn
+
+from diffusers.configuration_utils import ConfigMixin, register_to_config
+from diffusers.modeling_utils import ModelMixin
+from diffusers.utils import BaseOutput
+from diffusers.utils.import_utils import is_xformers_available
+from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm
+
+from einops import rearrange, repeat
+
+
+@dataclass
+class Transformer3DModelOutput(BaseOutput):
+ sample: torch.FloatTensor
+
+
+if is_xformers_available():
+ import xformers
+ import xformers.ops
+else:
+ xformers = None
+
+
+class Transformer3DModel(ModelMixin, ConfigMixin):
+ @register_to_config
+ def __init__(
+ self,
+ num_attention_heads: int = 16,
+ attention_head_dim: int = 88,
+ in_channels: Optional[int] = None,
+ num_layers: int = 1,
+ dropout: float = 0.0,
+ norm_num_groups: int = 32,
+ cross_attention_dim: Optional[int] = None,
+ attention_bias: bool = False,
+ activation_fn: str = "geglu",
+ num_embeds_ada_norm: Optional[int] = None,
+ use_linear_projection: bool = False,
+ only_cross_attention: bool = False,
+ upcast_attention: bool = False,
+ ):
+ super().__init__()
+ self.use_linear_projection = use_linear_projection
+ self.num_attention_heads = num_attention_heads
+ self.attention_head_dim = attention_head_dim
+ inner_dim = num_attention_heads * attention_head_dim
+
+ # Define input layers
+ self.in_channels = in_channels
+
+ self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
+ if use_linear_projection:
+ self.proj_in = nn.Linear(in_channels, inner_dim)
+ else:
+ self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
+
+ # Define transformers blocks
+ self.transformer_blocks = nn.ModuleList(
+ [
+ BasicTransformerBlock(
+ inner_dim,
+ num_attention_heads,
+ attention_head_dim,
+ dropout=dropout,
+ cross_attention_dim=cross_attention_dim,
+ activation_fn=activation_fn,
+ num_embeds_ada_norm=num_embeds_ada_norm,
+ attention_bias=attention_bias,
+ only_cross_attention=only_cross_attention,
+ upcast_attention=upcast_attention,
+ )
+ for d in range(num_layers)
+ ]
+ )
+
+ # 4. Define output layers
+ if use_linear_projection:
+ self.proj_out = nn.Linear(in_channels, inner_dim)
+ else:
+ self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
+
+ def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
+ # Input
+ assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
+ video_length = hidden_states.shape[2]
+ hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
+ encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
+
+ batch, channel, height, weight = hidden_states.shape
+ residual = hidden_states
+
+ hidden_states = self.norm(hidden_states)
+ if not self.use_linear_projection:
+ hidden_states = self.proj_in(hidden_states)
+ inner_dim = hidden_states.shape[1]
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
+ else:
+ inner_dim = hidden_states.shape[1]
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
+ hidden_states = self.proj_in(hidden_states)
+
+ # Blocks
+ for block in self.transformer_blocks:
+ hidden_states = block(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ timestep=timestep,
+ video_length=video_length
+ )
+
+ # Output
+ if not self.use_linear_projection:
+ hidden_states = (
+ hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
+ )
+ hidden_states = self.proj_out(hidden_states)
+ else:
+ hidden_states = self.proj_out(hidden_states)
+ hidden_states = (
+ hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
+ )
+
+ output = hidden_states + residual
+
+ output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
+ if not return_dict:
+ return (output,)
+
+ return Transformer3DModelOutput(sample=output)
+
+
+class BasicTransformerBlock(nn.Module):
+ def __init__(
+ self,
+ dim: int,
+ num_attention_heads: int,
+ attention_head_dim: int,
+ dropout=0.0,
+ cross_attention_dim: Optional[int] = None,
+ activation_fn: str = "geglu",
+ num_embeds_ada_norm: Optional[int] = None,
+ attention_bias: bool = False,
+ only_cross_attention: bool = False,
+ upcast_attention: bool = False,
+ ):
+ super().__init__()
+ self.only_cross_attention = only_cross_attention
+ self.use_ada_layer_norm = num_embeds_ada_norm is not None
+
+ # SC-Attn
+ self.attn1 = FrameAttention(
+ query_dim=dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ dropout=dropout,
+ bias=attention_bias,
+ cross_attention_dim=cross_attention_dim if only_cross_attention else None,
+ upcast_attention=upcast_attention,
+ )
+ self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
+
+ # Cross-Attn
+ if cross_attention_dim is not None:
+ self.attn2 = CrossAttention(
+ query_dim=dim,
+ cross_attention_dim=cross_attention_dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ dropout=dropout,
+ bias=attention_bias,
+ upcast_attention=upcast_attention,
+ )
+ else:
+ self.attn2 = None
+
+ if cross_attention_dim is not None:
+ self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
+ else:
+ self.norm2 = None
+
+ # Feed-forward
+ self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
+ self.norm3 = nn.LayerNorm(dim)
+
+ # Temp-Attn
+ self.attn_temp = CrossAttention(
+ query_dim=dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ dropout=dropout,
+ bias=attention_bias,
+ upcast_attention=upcast_attention,
+ )
+ nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
+ self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
+
+ def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
+ if not is_xformers_available():
+ print("Here is how to install it")
+ raise ModuleNotFoundError(
+ "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
+ " xformers",
+ name="xformers",
+ )
+ elif not torch.cuda.is_available():
+ raise ValueError(
+ "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
+ " available for GPU "
+ )
+ else:
+ try:
+ # Make sure we can run the memory efficient attention
+ _ = xformers.ops.memory_efficient_attention(
+ torch.randn((1, 2, 40), device="cuda"),
+ torch.randn((1, 2, 40), device="cuda"),
+ torch.randn((1, 2, 40), device="cuda"),
+ )
+ except Exception as e:
+ raise e
+ self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
+ if self.attn2 is not None:
+ self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
+ # self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
+
+ def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
+ # SparseCausal-Attention
+ norm_hidden_states = (
+ self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
+ )
+
+ if self.only_cross_attention:
+ hidden_states = (
+ self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
+ )
+ else:
+ hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
+
+ if self.attn2 is not None:
+ # Cross-Attention
+ norm_hidden_states = (
+ self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
+ )
+ hidden_states = (
+ self.attn2(
+ norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
+ )
+ + hidden_states
+ )
+
+ # Feed-forward
+ hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
+
+ # Temporal-Attention
+ d = hidden_states.shape[1]
+ hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
+ norm_hidden_states = (
+ self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
+ )
+ hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
+ hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
+
+ return hidden_states
+
+
+class FrameAttention(CrossAttention):
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
+ batch_size, sequence_length, _ = hidden_states.shape
+
+ encoder_hidden_states = encoder_hidden_states
+
+ if self.group_norm is not None:
+ hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
+
+ query = self.to_q(hidden_states)
+ dim = query.shape[-1]
+ query = self.reshape_heads_to_batch_dim(query)
+
+ if self.added_kv_proj_dim is not None:
+ raise NotImplementedError
+
+ encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
+ key = self.to_k(encoder_hidden_states)
+ value = self.to_v(encoder_hidden_states)
+
+ former_frame_index = torch.arange(video_length) - 1
+ former_frame_index[0] = 0
+
+ key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
+ key = key[:, [0] * video_length]
+ key = rearrange(key, "b f d c -> (b f) d c")
+
+ value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
+ value = value[:, [0] * video_length]
+ value = rearrange(value, "b f d c -> (b f) d c")
+
+ key = self.reshape_heads_to_batch_dim(key)
+ value = self.reshape_heads_to_batch_dim(value)
+
+ if attention_mask is not None:
+ if attention_mask.shape[-1] != query.shape[1]:
+ target_length = query.shape[1]
+ attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
+ attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
+
+ # attention, what we cannot get enough of
+ if self._use_memory_efficient_attention_xformers:
+ hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
+ # Some versions of xformers return output in fp32, cast it back to the dtype of the input
+ hidden_states = hidden_states.to(query.dtype)
+ else:
+ if self._slice_size is None or query.shape[0] // self._slice_size == 1:
+ hidden_states = self._attention(query, key, value, attention_mask)
+ else:
+ hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
+
+ # linear proj
+ hidden_states = self.to_out[0](hidden_states)
+
+ # dropout
+ hidden_states = self.to_out[1](hidden_states)
+ return hidden_states
\ No newline at end of file
diff --git a/Video-P2P/tuneavideo/models/resnet.py b/Video-P2P/tuneavideo/models/resnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..be0eeae1511ae13fa128be31338aaed0752fd4bd
--- /dev/null
+++ b/Video-P2P/tuneavideo/models/resnet.py
@@ -0,0 +1,210 @@
+# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
+# https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/models/resnet.py
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from einops import rearrange
+
+
+class InflatedConv3d(nn.Conv2d):
+ def forward(self, x):
+ video_length = x.shape[2]
+
+ x = rearrange(x, "b c f h w -> (b f) c h w")
+ x = super().forward(x)
+ x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
+
+ return x
+
+
+class Upsample3D(nn.Module):
+ def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.use_conv_transpose = use_conv_transpose
+ self.name = name
+
+ conv = None
+ if use_conv_transpose:
+ raise NotImplementedError
+ elif use_conv:
+ conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
+
+ if name == "conv":
+ self.conv = conv
+ else:
+ self.Conv2d_0 = conv
+
+ def forward(self, hidden_states, output_size=None):
+ assert hidden_states.shape[1] == self.channels
+
+ if self.use_conv_transpose:
+ raise NotImplementedError
+
+ # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
+ dtype = hidden_states.dtype
+ if dtype == torch.bfloat16:
+ hidden_states = hidden_states.to(torch.float32)
+
+ # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
+ if hidden_states.shape[0] >= 64:
+ hidden_states = hidden_states.contiguous()
+
+ # if `output_size` is passed we force the interpolation output
+ # size and do not make use of `scale_factor=2`
+ if output_size is None:
+ hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
+ else:
+ hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
+
+ # If the input is bfloat16, we cast back to bfloat16
+ if dtype == torch.bfloat16:
+ hidden_states = hidden_states.to(dtype)
+
+ if self.use_conv:
+ if self.name == "conv":
+ hidden_states = self.conv(hidden_states)
+ else:
+ hidden_states = self.Conv2d_0(hidden_states)
+
+ return hidden_states
+
+
+class Downsample3D(nn.Module):
+ def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.padding = padding
+ stride = 2
+ self.name = name
+
+ if use_conv:
+ conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
+ else:
+ raise NotImplementedError
+
+ if name == "conv":
+ self.Conv2d_0 = conv
+ self.conv = conv
+ elif name == "Conv2d_0":
+ self.conv = conv
+ else:
+ self.conv = conv
+
+ def forward(self, hidden_states):
+ assert hidden_states.shape[1] == self.channels
+ if self.use_conv and self.padding == 0:
+ raise NotImplementedError
+
+ assert hidden_states.shape[1] == self.channels
+ hidden_states = self.conv(hidden_states)
+
+ return hidden_states
+
+
+class ResnetBlock3D(nn.Module):
+ def __init__(
+ self,
+ *,
+ in_channels,
+ out_channels=None,
+ conv_shortcut=False,
+ dropout=0.0,
+ temb_channels=512,
+ groups=32,
+ groups_out=None,
+ pre_norm=True,
+ eps=1e-6,
+ non_linearity="swish",
+ time_embedding_norm="default",
+ output_scale_factor=1.0,
+ use_in_shortcut=None,
+ ):
+ super().__init__()
+ self.pre_norm = pre_norm
+ self.pre_norm = True
+ self.in_channels = in_channels
+ out_channels = in_channels if out_channels is None else out_channels
+ self.out_channels = out_channels
+ self.use_conv_shortcut = conv_shortcut
+ self.time_embedding_norm = time_embedding_norm
+ self.output_scale_factor = output_scale_factor
+
+ if groups_out is None:
+ groups_out = groups
+
+ self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
+
+ self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
+
+ if temb_channels is not None:
+ if self.time_embedding_norm == "default":
+ time_emb_proj_out_channels = out_channels
+ elif self.time_embedding_norm == "scale_shift":
+ time_emb_proj_out_channels = out_channels * 2
+ else:
+ raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
+
+ self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
+ else:
+ self.time_emb_proj = None
+
+ self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
+ self.dropout = torch.nn.Dropout(dropout)
+ self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
+
+ if non_linearity == "swish":
+ self.nonlinearity = lambda x: F.silu(x)
+ elif non_linearity == "mish":
+ self.nonlinearity = Mish()
+ elif non_linearity == "silu":
+ self.nonlinearity = nn.SiLU()
+
+ self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
+
+ self.conv_shortcut = None
+ if self.use_in_shortcut:
+ self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
+
+ def forward(self, input_tensor, temb):
+ hidden_states = input_tensor
+
+ hidden_states = self.norm1(hidden_states)
+ hidden_states = self.nonlinearity(hidden_states)
+
+ hidden_states = self.conv1(hidden_states)
+
+ if temb is not None:
+ temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
+
+ if temb is not None and self.time_embedding_norm == "default":
+ hidden_states = hidden_states + temb
+
+ hidden_states = self.norm2(hidden_states)
+
+ if temb is not None and self.time_embedding_norm == "scale_shift":
+ scale, shift = torch.chunk(temb, 2, dim=1)
+ hidden_states = hidden_states * (1 + scale) + shift
+
+ hidden_states = self.nonlinearity(hidden_states)
+
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.conv2(hidden_states)
+
+ if self.conv_shortcut is not None:
+ input_tensor = self.conv_shortcut(input_tensor)
+
+ output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
+
+ return output_tensor
+
+
+class Mish(torch.nn.Module):
+ def forward(self, hidden_states):
+ return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
\ No newline at end of file
diff --git a/Video-P2P/tuneavideo/models/unet.py b/Video-P2P/tuneavideo/models/unet.py
new file mode 100644
index 0000000000000000000000000000000000000000..f3c3cab4c28f6a6dbfc0cfdd13b1cc8ff313e589
--- /dev/null
+++ b/Video-P2P/tuneavideo/models/unet.py
@@ -0,0 +1,451 @@
+# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
+# https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/models/unet.py
+
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import os
+import json
+
+import torch
+import torch.nn as nn
+import torch.utils.checkpoint
+
+from diffusers.configuration_utils import ConfigMixin, register_to_config
+from diffusers.modeling_utils import ModelMixin
+from diffusers.utils import BaseOutput, logging
+from diffusers.models.embeddings import TimestepEmbedding, Timesteps
+from .unet_blocks import (
+ CrossAttnDownBlock3D,
+ CrossAttnUpBlock3D,
+ DownBlock3D,
+ UNetMidBlock3DCrossAttn,
+ UpBlock3D,
+ get_down_block,
+ get_up_block,
+)
+from .resnet import InflatedConv3d
+
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+@dataclass
+class UNet3DConditionOutput(BaseOutput):
+ sample: torch.FloatTensor
+
+
+class UNet3DConditionModel(ModelMixin, ConfigMixin):
+ _supports_gradient_checkpointing = True
+
+ @register_to_config
+ def __init__(
+ self,
+ sample_size: Optional[int] = None,
+ in_channels: int = 4,
+ out_channels: int = 4,
+ center_input_sample: bool = False,
+ flip_sin_to_cos: bool = True,
+ freq_shift: int = 0,
+ down_block_types: Tuple[str] = (
+ "CrossAttnDownBlock3D",
+ "CrossAttnDownBlock3D",
+ "CrossAttnDownBlock3D",
+ "DownBlock3D",
+ ),
+ mid_block_type: str = "UNetMidBlock3DCrossAttn",
+ up_block_types: Tuple[str] = (
+ "UpBlock3D",
+ "CrossAttnUpBlock3D",
+ "CrossAttnUpBlock3D",
+ "CrossAttnUpBlock3D"
+ ),
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
+ layers_per_block: int = 2,
+ downsample_padding: int = 1,
+ mid_block_scale_factor: float = 1,
+ act_fn: str = "silu",
+ norm_num_groups: int = 32,
+ norm_eps: float = 1e-5,
+ cross_attention_dim: int = 1280,
+ attention_head_dim: Union[int, Tuple[int]] = 8,
+ dual_cross_attention: bool = False,
+ use_linear_projection: bool = False,
+ class_embed_type: Optional[str] = None,
+ num_class_embeds: Optional[int] = None,
+ upcast_attention: bool = False,
+ resnet_time_scale_shift: str = "default",
+ ):
+ super().__init__()
+
+ self.sample_size = sample_size
+ time_embed_dim = block_out_channels[0] * 4
+
+ # input
+ self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
+
+ # time
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
+ timestep_input_dim = block_out_channels[0]
+
+ self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
+
+ # class embedding
+ if class_embed_type is None and num_class_embeds is not None:
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
+ elif class_embed_type == "timestep":
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
+ elif class_embed_type == "identity":
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
+ else:
+ self.class_embedding = None
+
+ self.down_blocks = nn.ModuleList([])
+ self.mid_block = None
+ self.up_blocks = nn.ModuleList([])
+
+ if isinstance(only_cross_attention, bool):
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
+
+ if isinstance(attention_head_dim, int):
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
+
+ # down
+ output_channel = block_out_channels[0]
+ for i, down_block_type in enumerate(down_block_types):
+ input_channel = output_channel
+ output_channel = block_out_channels[i]
+ is_final_block = i == len(block_out_channels) - 1
+
+ down_block = get_down_block(
+ down_block_type,
+ num_layers=layers_per_block,
+ in_channels=input_channel,
+ out_channels=output_channel,
+ temb_channels=time_embed_dim,
+ add_downsample=not is_final_block,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ resnet_groups=norm_num_groups,
+ cross_attention_dim=cross_attention_dim,
+ attn_num_head_channels=attention_head_dim[i],
+ downsample_padding=downsample_padding,
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention[i],
+ upcast_attention=upcast_attention,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ self.down_blocks.append(down_block)
+
+ # mid
+ if mid_block_type == "UNetMidBlock3DCrossAttn":
+ self.mid_block = UNetMidBlock3DCrossAttn(
+ in_channels=block_out_channels[-1],
+ temb_channels=time_embed_dim,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ output_scale_factor=mid_block_scale_factor,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ cross_attention_dim=cross_attention_dim,
+ attn_num_head_channels=attention_head_dim[-1],
+ resnet_groups=norm_num_groups,
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ upcast_attention=upcast_attention,
+ )
+ else:
+ raise ValueError(f"unknown mid_block_type : {mid_block_type}")
+
+ # count how many layers upsample the videos
+ self.num_upsamplers = 0
+
+ # up
+ reversed_block_out_channels = list(reversed(block_out_channels))
+ reversed_attention_head_dim = list(reversed(attention_head_dim))
+ only_cross_attention = list(reversed(only_cross_attention))
+ output_channel = reversed_block_out_channels[0]
+ for i, up_block_type in enumerate(up_block_types):
+ is_final_block = i == len(block_out_channels) - 1
+
+ prev_output_channel = output_channel
+ output_channel = reversed_block_out_channels[i]
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
+
+ # add upsample block for all BUT final layer
+ if not is_final_block:
+ add_upsample = True
+ self.num_upsamplers += 1
+ else:
+ add_upsample = False
+
+ up_block = get_up_block(
+ up_block_type,
+ num_layers=layers_per_block + 1,
+ in_channels=input_channel,
+ out_channels=output_channel,
+ prev_output_channel=prev_output_channel,
+ temb_channels=time_embed_dim,
+ add_upsample=add_upsample,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ resnet_groups=norm_num_groups,
+ cross_attention_dim=cross_attention_dim,
+ attn_num_head_channels=reversed_attention_head_dim[i],
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention[i],
+ upcast_attention=upcast_attention,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ self.up_blocks.append(up_block)
+ prev_output_channel = output_channel
+
+ # out
+ self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
+ self.conv_act = nn.SiLU()
+ self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
+
+ def set_attention_slice(self, slice_size):
+ r"""
+ Enable sliced attention computation.
+
+ When this option is enabled, the attention module will split the input tensor in slices, to compute attention
+ in several steps. This is useful to save some memory in exchange for a small speed decrease.
+
+ Args:
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
+ When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
+ `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
+ must be a multiple of `slice_size`.
+ """
+ sliceable_head_dims = []
+
+ def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
+ if hasattr(module, "set_attention_slice"):
+ sliceable_head_dims.append(module.sliceable_head_dim)
+
+ for child in module.children():
+ fn_recursive_retrieve_slicable_dims(child)
+
+ # retrieve number of attention layers
+ for module in self.children():
+ fn_recursive_retrieve_slicable_dims(module)
+
+ num_slicable_layers = len(sliceable_head_dims)
+
+ if slice_size == "auto":
+ # half the attention head size is usually a good trade-off between
+ # speed and memory
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
+ elif slice_size == "max":
+ # make smallest slice possible
+ slice_size = num_slicable_layers * [1]
+
+ slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
+
+ if len(slice_size) != len(sliceable_head_dims):
+ raise ValueError(
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
+ )
+
+ for i in range(len(slice_size)):
+ size = slice_size[i]
+ dim = sliceable_head_dims[i]
+ if size is not None and size > dim:
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
+
+ # Recursively walk through all the children.
+ # Any children which exposes the set_attention_slice method
+ # gets the message
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
+ if hasattr(module, "set_attention_slice"):
+ module.set_attention_slice(slice_size.pop())
+
+ for child in module.children():
+ fn_recursive_set_attention_slice(child, slice_size)
+
+ reversed_slice_size = list(reversed(slice_size))
+ for module in self.children():
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
+
+ def _set_gradient_checkpointing(self, module, value=False):
+ if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
+ module.gradient_checkpointing = value
+
+ def forward(
+ self,
+ sample: torch.FloatTensor,
+ timestep: Union[torch.Tensor, float, int],
+ encoder_hidden_states: torch.Tensor,
+ class_labels: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ return_dict: bool = True,
+ ) -> Union[UNet3DConditionOutput, Tuple]:
+ r"""
+ Args:
+ sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
+ timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
+ encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
+
+ Returns:
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
+ returning a tuple, the first element is the sample tensor.
+ """
+ # By default samples have to be AT least a multiple of the overall upsampling factor.
+ # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
+ # However, the upsampling interpolation output size can be forced to fit any upsampling size
+ # on the fly if necessary.
+ default_overall_up_factor = 2**self.num_upsamplers
+
+ # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
+ forward_upsample_size = False
+ upsample_size = None
+
+ if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
+ logger.info("Forward upsample size to force interpolation output size.")
+ forward_upsample_size = True
+
+ # prepare attention_mask
+ if attention_mask is not None:
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
+ attention_mask = attention_mask.unsqueeze(1)
+
+ # center input if necessary
+ if self.config.center_input_sample:
+ sample = 2 * sample - 1.0
+
+ # time
+ timesteps = timestep
+ if not torch.is_tensor(timesteps):
+ # This would be a good case for the `match` statement (Python 3.10+)
+ is_mps = sample.device.type == "mps"
+ if isinstance(timestep, float):
+ dtype = torch.float32 if is_mps else torch.float64
+ else:
+ dtype = torch.int32 if is_mps else torch.int64
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
+ elif len(timesteps.shape) == 0:
+ timesteps = timesteps[None].to(sample.device)
+
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
+ timesteps = timesteps.expand(sample.shape[0])
+
+ t_emb = self.time_proj(timesteps)
+
+ # timesteps does not contain any weights and will always return f32 tensors
+ # but time_embedding might actually be running in fp16. so we need to cast here.
+ # there might be better ways to encapsulate this.
+ t_emb = t_emb.to(dtype=self.dtype)
+ emb = self.time_embedding(t_emb)
+
+ if self.class_embedding is not None:
+ if class_labels is None:
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
+
+ if self.config.class_embed_type == "timestep":
+ class_labels = self.time_proj(class_labels)
+
+ class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
+ emb = emb + class_emb
+
+ # pre-process
+ sample = self.conv_in(sample)
+
+ # down
+ down_block_res_samples = (sample,)
+ for downsample_block in self.down_blocks:
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
+ sample, res_samples = downsample_block(
+ hidden_states=sample,
+ temb=emb,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=attention_mask,
+ )
+ else:
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
+
+ down_block_res_samples += res_samples
+
+ # mid
+ sample = self.mid_block(
+ sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
+ )
+
+ # up
+ for i, upsample_block in enumerate(self.up_blocks):
+ is_final_block = i == len(self.up_blocks) - 1
+
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
+
+ # if we have not reached the final block and need to forward the
+ # upsample size, we do it here
+ if not is_final_block and forward_upsample_size:
+ upsample_size = down_block_res_samples[-1].shape[2:]
+
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
+ sample = upsample_block(
+ hidden_states=sample,
+ temb=emb,
+ res_hidden_states_tuple=res_samples,
+ encoder_hidden_states=encoder_hidden_states,
+ upsample_size=upsample_size,
+ attention_mask=attention_mask,
+ )
+ else:
+ sample = upsample_block(
+ hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
+ )
+ # post-process
+ sample = self.conv_norm_out(sample)
+ sample = self.conv_act(sample)
+ sample = self.conv_out(sample)
+
+ if not return_dict:
+ return (sample,)
+
+ return UNet3DConditionOutput(sample=sample)
+
+ @classmethod
+ def from_pretrained_2d(cls, pretrained_model_path, subfolder=None):
+ if subfolder is not None:
+ pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
+
+ config_file = os.path.join(pretrained_model_path, 'config.json')
+ if not os.path.isfile(config_file):
+ raise RuntimeError(f"{config_file} does not exist")
+ with open(config_file, "r") as f:
+ config = json.load(f)
+ config["_class_name"] = cls.__name__
+ config["down_block_types"] = [
+ "CrossAttnDownBlock3D",
+ "CrossAttnDownBlock3D",
+ "CrossAttnDownBlock3D",
+ "DownBlock3D"
+ ]
+ config["up_block_types"] = [
+ "UpBlock3D",
+ "CrossAttnUpBlock3D",
+ "CrossAttnUpBlock3D",
+ "CrossAttnUpBlock3D"
+ ]
+
+ from diffusers.utils import WEIGHTS_NAME
+ model = cls.from_config(config)
+ model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
+ if not os.path.isfile(model_file):
+ raise RuntimeError(f"{model_file} does not exist")
+ state_dict = torch.load(model_file, map_location="cpu")
+ for k, v in model.state_dict().items():
+ if '_temp.' in k:
+ state_dict.update({k: v})
+ model.load_state_dict(state_dict)
+
+ return model
\ No newline at end of file
diff --git a/Video-P2P/tuneavideo/models/unet_blocks.py b/Video-P2P/tuneavideo/models/unet_blocks.py
new file mode 100644
index 0000000000000000000000000000000000000000..2d21edbc03d0098800a963e74fcf5ef0e29593bd
--- /dev/null
+++ b/Video-P2P/tuneavideo/models/unet_blocks.py
@@ -0,0 +1,589 @@
+# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
+# https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/models/unet_blocks.py
+
+import torch
+from torch import nn
+
+from .attention import Transformer3DModel
+from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
+
+
+def get_down_block(
+ down_block_type,
+ num_layers,
+ in_channels,
+ out_channels,
+ temb_channels,
+ add_downsample,
+ resnet_eps,
+ resnet_act_fn,
+ attn_num_head_channels,
+ resnet_groups=None,
+ cross_attention_dim=None,
+ downsample_padding=None,
+ dual_cross_attention=False,
+ use_linear_projection=False,
+ only_cross_attention=False,
+ upcast_attention=False,
+ resnet_time_scale_shift="default",
+):
+ down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
+ if down_block_type == "DownBlock3D":
+ return DownBlock3D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ downsample_padding=downsample_padding,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif down_block_type == "CrossAttnDownBlock3D":
+ if cross_attention_dim is None:
+ raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
+ return CrossAttnDownBlock3D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ downsample_padding=downsample_padding,
+ cross_attention_dim=cross_attention_dim,
+ attn_num_head_channels=attn_num_head_channels,
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention,
+ upcast_attention=upcast_attention,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ raise ValueError(f"{down_block_type} does not exist.")
+
+
+def get_up_block(
+ up_block_type,
+ num_layers,
+ in_channels,
+ out_channels,
+ prev_output_channel,
+ temb_channels,
+ add_upsample,
+ resnet_eps,
+ resnet_act_fn,
+ attn_num_head_channels,
+ resnet_groups=None,
+ cross_attention_dim=None,
+ dual_cross_attention=False,
+ use_linear_projection=False,
+ only_cross_attention=False,
+ upcast_attention=False,
+ resnet_time_scale_shift="default",
+):
+ up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
+ if up_block_type == "UpBlock3D":
+ return UpBlock3D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif up_block_type == "CrossAttnUpBlock3D":
+ if cross_attention_dim is None:
+ raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
+ return CrossAttnUpBlock3D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ cross_attention_dim=cross_attention_dim,
+ attn_num_head_channels=attn_num_head_channels,
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention,
+ upcast_attention=upcast_attention,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ raise ValueError(f"{up_block_type} does not exist.")
+
+
+class UNetMidBlock3DCrossAttn(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attn_num_head_channels=1,
+ output_scale_factor=1.0,
+ cross_attention_dim=1280,
+ dual_cross_attention=False,
+ use_linear_projection=False,
+ upcast_attention=False,
+ ):
+ super().__init__()
+
+ self.has_cross_attention = True
+ self.attn_num_head_channels = attn_num_head_channels
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
+
+ # there is always at least one resnet
+ resnets = [
+ ResnetBlock3D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ ]
+ attentions = []
+
+ for _ in range(num_layers):
+ if dual_cross_attention:
+ raise NotImplementedError
+ attentions.append(
+ Transformer3DModel(
+ attn_num_head_channels,
+ in_channels // attn_num_head_channels,
+ in_channels=in_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ use_linear_projection=use_linear_projection,
+ upcast_attention=upcast_attention,
+ )
+ )
+ resnets.append(
+ ResnetBlock3D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
+ hidden_states = self.resnets[0](hidden_states, temb)
+ for attn, resnet in zip(self.attentions, self.resnets[1:]):
+ hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
+ hidden_states = resnet(hidden_states, temb)
+
+ return hidden_states
+
+
+class CrossAttnDownBlock3D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attn_num_head_channels=1,
+ cross_attention_dim=1280,
+ output_scale_factor=1.0,
+ downsample_padding=1,
+ add_downsample=True,
+ dual_cross_attention=False,
+ use_linear_projection=False,
+ only_cross_attention=False,
+ upcast_attention=False,
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ self.has_cross_attention = True
+ self.attn_num_head_channels = attn_num_head_channels
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock3D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ if dual_cross_attention:
+ raise NotImplementedError
+ attentions.append(
+ Transformer3DModel(
+ attn_num_head_channels,
+ out_channels // attn_num_head_channels,
+ in_channels=out_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention,
+ upcast_attention=upcast_attention,
+ )
+ )
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.ModuleList(
+ [
+ Downsample3D(
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
+ output_states = ()
+
+ for resnet, attn in zip(self.resnets, self.attentions):
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(attn, return_dict=False),
+ hidden_states,
+ encoder_hidden_states,
+ )[0]
+ else:
+ hidden_states = resnet(hidden_states, temb)
+ hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
+
+ output_states += (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states)
+
+ output_states += (hidden_states,)
+
+ return hidden_states, output_states
+
+
+class DownBlock3D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor=1.0,
+ add_downsample=True,
+ downsample_padding=1,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock3D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.ModuleList(
+ [
+ Downsample3D(
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(self, hidden_states, temb=None):
+ output_states = ()
+
+ for resnet in self.resnets:
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
+ else:
+ hidden_states = resnet(hidden_states, temb)
+
+ output_states += (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states)
+
+ output_states += (hidden_states,)
+
+ return hidden_states, output_states
+
+
+class CrossAttnUpBlock3D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ prev_output_channel: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attn_num_head_channels=1,
+ cross_attention_dim=1280,
+ output_scale_factor=1.0,
+ add_upsample=True,
+ dual_cross_attention=False,
+ use_linear_projection=False,
+ only_cross_attention=False,
+ upcast_attention=False,
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ self.has_cross_attention = True
+ self.attn_num_head_channels = attn_num_head_channels
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock3D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ if dual_cross_attention:
+ raise NotImplementedError
+ attentions.append(
+ Transformer3DModel(
+ attn_num_head_channels,
+ out_channels // attn_num_head_channels,
+ in_channels=out_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention,
+ upcast_attention=upcast_attention,
+ )
+ )
+
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
+ else:
+ self.upsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states,
+ res_hidden_states_tuple,
+ temb=None,
+ encoder_hidden_states=None,
+ upsample_size=None,
+ attention_mask=None,
+ ):
+ for resnet, attn in zip(self.resnets, self.attentions):
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(attn, return_dict=False),
+ hidden_states,
+ encoder_hidden_states,
+ )[0]
+ else:
+ hidden_states = resnet(hidden_states, temb)
+ hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states, upsample_size)
+
+ return hidden_states
+
+
+class UpBlock3D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ prev_output_channel: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor=1.0,
+ add_upsample=True,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock3D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
+ else:
+ self.upsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
+ for resnet in self.resnets:
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
+ else:
+ hidden_states = resnet(hidden_states, temb)
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states, upsample_size)
+
+ return hidden_states
diff --git a/Video-P2P/tuneavideo/pipelines/pipeline_tuneavideo.py b/Video-P2P/tuneavideo/pipelines/pipeline_tuneavideo.py
new file mode 100644
index 0000000000000000000000000000000000000000..9619b2fe7022ebe5467b8968dc1e7004bcb2eae7
--- /dev/null
+++ b/Video-P2P/tuneavideo/pipelines/pipeline_tuneavideo.py
@@ -0,0 +1,437 @@
+# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
+# https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/pipelines/pipeline_tuneavideo.py
+
+import inspect
+from typing import Callable, List, Optional, Union
+from dataclasses import dataclass
+
+import numpy as np
+import torch
+
+from diffusers.utils import is_accelerate_available
+from packaging import version
+from transformers import CLIPTextModel, CLIPTokenizer
+
+from diffusers.configuration_utils import FrozenDict
+from diffusers.models import AutoencoderKL
+from diffusers.pipeline_utils import DiffusionPipeline
+from diffusers.schedulers import (
+ DDIMScheduler,
+ DPMSolverMultistepScheduler,
+ EulerAncestralDiscreteScheduler,
+ EulerDiscreteScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+)
+from diffusers.utils import deprecate, logging, BaseOutput
+
+from einops import rearrange, repeat
+
+from ..models.unet import UNet3DConditionModel
+
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+@dataclass
+class TuneAVideoPipelineOutput(BaseOutput):
+ videos: Union[torch.Tensor, np.ndarray]
+
+
+class TuneAVideoPipeline(DiffusionPipeline):
+ _optional_components = []
+
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ text_encoder: CLIPTextModel,
+ tokenizer: CLIPTokenizer,
+ unet: UNet3DConditionModel,
+ scheduler: Union[
+ DDIMScheduler,
+ PNDMScheduler,
+ LMSDiscreteScheduler,
+ EulerDiscreteScheduler,
+ EulerAncestralDiscreteScheduler,
+ DPMSolverMultistepScheduler,
+ ],
+ ):
+ super().__init__()
+
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
+ " file"
+ )
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["steps_offset"] = 1
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
+ )
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["clip_sample"] = False
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
+ version.parse(unet.config._diffusers_version).base_version
+ ) < version.parse("0.9.0.dev0")
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
+ deprecation_message = (
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
+ " the `unet/config.json` file"
+ )
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(unet.config)
+ new_config["sample_size"] = 64
+ unet._internal_dict = FrozenDict(new_config)
+
+ self.register_modules(
+ vae=vae,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ scheduler=scheduler,
+ )
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+
+ def enable_vae_slicing(self):
+ self.vae.enable_slicing()
+
+ def disable_vae_slicing(self):
+ self.vae.disable_slicing()
+
+ def enable_sequential_cpu_offload(self, gpu_id=0):
+ if is_accelerate_available():
+ from accelerate import cpu_offload
+ else:
+ raise ImportError("Please install accelerate via `pip install accelerate`")
+
+ device = torch.device(f"cuda:{gpu_id}")
+
+ for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
+ if cpu_offloaded_model is not None:
+ cpu_offload(cpu_offloaded_model, device)
+
+
+ @property
+ def _execution_device(self):
+ if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
+ return self.device
+ for module in self.unet.modules():
+ if (
+ hasattr(module, "_hf_hook")
+ and hasattr(module._hf_hook, "execution_device")
+ and module._hf_hook.execution_device is not None
+ ):
+ return torch.device(module._hf_hook.execution_device)
+ return self.device
+
+ def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt):
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="pt",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
+
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
+ attention_mask = text_inputs.attention_mask.to(device)
+ else:
+ attention_mask = None
+
+ text_embeddings = self.text_encoder(
+ text_input_ids.to(device),
+ attention_mask=attention_mask,
+ )
+ text_embeddings = text_embeddings[0]
+
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ bs_embed, seq_len, _ = text_embeddings.shape
+ text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
+ text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt]
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ max_length = text_input_ids.shape[-1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="pt",
+ )
+
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
+ attention_mask = uncond_input.attention_mask.to(device)
+ else:
+ attention_mask = None
+
+ uncond_embeddings = self.text_encoder(
+ uncond_input.input_ids.to(device),
+ attention_mask=attention_mask,
+ )
+ uncond_embeddings = uncond_embeddings[0]
+
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = uncond_embeddings.shape[1]
+ uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
+ uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1)
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+ def decode_latents(self, latents):
+ video_length = latents.shape[2]
+ latents = 1 / 0.18215 * latents
+ latents = rearrange(latents, "b c f h w -> (b f) c h w")
+ bs = 4
+ video_list = []
+ for i in range(max(latents.shape[0]//bs, 1)):
+ video = self.vae.decode(latents[i*bs:min((i+1)*bs, latents.shape[0])]).sample
+ video = (video / 2 + 0.5).clamp(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ video = video.cpu().float().numpy()
+ video_list.append(video)
+ if len(video_list) > 1:
+ video = np.concatenate(video_list, axis=0)
+ else:
+ video = video_list[0]
+ video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
+ return video
+
+ def prepare_extra_step_kwargs(self, generator, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ # check if the scheduler accepts generator
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ if accepts_generator:
+ extra_step_kwargs["generator"] = generator
+ return extra_step_kwargs
+
+ def check_inputs(self, prompt, height, width, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if height % 8 != 0 or width % 8 != 0:
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
+ shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if latents is None:
+ rand_device = "cpu" if device.type == "mps" else device
+
+ if isinstance(generator, list):
+ shape = (1,) + shape[1:]
+ latents = [
+ torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
+ for i in range(batch_size)
+ ]
+ latents = torch.cat(latents, dim=0).to(device)
+ else:
+ latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
+ else:
+ if latents.shape != shape:
+ # raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
+ latents = latents.expand(shape)
+ latents = latents.to(device)
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * self.scheduler.init_noise_sigma
+ return latents
+
+ @torch.no_grad()
+ def __call__(
+ self,
+ prompt: Union[str, List[str]],
+ video_length: Optional[int],
+ height: Optional[int] = 512,
+ width: Optional[int] = 512,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_videos_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
+ latents: Optional[torch.FloatTensor] = None,
+ output_type: Optional[str] = "tensor",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ uncond_embeddings_pre=None,
+ controller=None,
+ multi=False,
+ fast=False,
+ **kwargs,
+ ):
+ # Default height and width to unet
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
+
+ # Check inputs. Raise error if not correct
+ self.check_inputs(prompt, height, width, callback_steps)
+
+ # Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ device = self._execution_device
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
+ )
+ if multi:
+ text_embeddings = repeat(text_embeddings, 'b n c -> (b f) n c', f=video_length)
+
+ # Prepare timesteps
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
+ timesteps = self.scheduler.timesteps
+
+ # Prepare latent variables
+ num_channels_latents = self.unet.in_channels
+ latents = self.prepare_latents(
+ batch_size * num_videos_per_prompt,
+ num_channels_latents,
+ video_length,
+ height,
+ width,
+ text_embeddings.dtype,
+ device,
+ generator,
+ latents,
+ )
+ latents_dtype = latents.dtype
+
+ # Prepare extra step kwargs.
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+ # Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+ if uncond_embeddings_pre is not None:
+ if multi:
+ text_embeddings[:video_length] = uncond_embeddings_pre[i]
+ else:
+ text_embeddings[0] = uncond_embeddings_pre[i]
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample.to(dtype=latents_dtype)
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+ if fast: # not using classifier-free
+ # after tuning, ddim inversion without CFG can also recover the video at most time
+ # use null-text to persue more stable performance
+ noise_pred[0] = noise_pred_text[0]
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+ weight_type = latents.dtype
+
+ if controller is not None:
+ latents = controller.step_callback(latents).to(device, dtype=weight_type)
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # Post-processing
+ video = self.decode_latents(latents)
+
+ # Convert to tensor
+ if output_type == "tensor":
+ video = torch.from_numpy(video)
+
+ if not return_dict:
+ return video
+
+ return TuneAVideoPipelineOutput(videos=video)
\ No newline at end of file
diff --git a/Video-P2P/tuneavideo/util.py b/Video-P2P/tuneavideo/util.py
new file mode 100644
index 0000000000000000000000000000000000000000..5f488e0071ec378730a1ccda89c13fbd6cc1a5b5
--- /dev/null
+++ b/Video-P2P/tuneavideo/util.py
@@ -0,0 +1,86 @@
+# https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/util.py
+
+import os
+import imageio
+import numpy as np
+from typing import Union
+
+import torch
+import torchvision
+
+from tqdm import tqdm
+from einops import rearrange
+
+
+def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=8):
+ videos = rearrange(videos, "b c t h w -> t b c h w")
+ outputs = []
+ for x in videos:
+ x = torchvision.utils.make_grid(x, nrow=n_rows)
+ x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
+ if rescale:
+ x = (x + 1.0) / 2.0 # -1,1 -> 0,1
+ x = (x * 255).numpy().astype(np.uint8)
+ outputs.append(x)
+
+ os.makedirs(os.path.dirname(path), exist_ok=True)
+ imageio.mimsave(path, outputs, fps=fps)
+
+
+# DDIM Inversion
+@torch.no_grad()
+def init_prompt(prompt, pipeline):
+ uncond_input = pipeline.tokenizer(
+ [""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
+ return_tensors="pt"
+ )
+ uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
+ text_input = pipeline.tokenizer(
+ [prompt],
+ padding="max_length",
+ max_length=pipeline.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="pt",
+ )
+ text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
+ context = torch.cat([uncond_embeddings, text_embeddings])
+
+ return context
+
+
+def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
+ sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
+ timestep, next_timestep = min(
+ timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
+ alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
+ alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
+ beta_prod_t = 1 - alpha_prod_t
+ next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
+ next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
+ next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
+ return next_sample
+
+
+def get_noise_pred_single(latents, t, context, unet):
+ noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
+ return noise_pred
+
+
+@torch.no_grad()
+def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
+ context = init_prompt(prompt, pipeline)
+ uncond_embeddings, cond_embeddings = context.chunk(2)
+ all_latent = [latent]
+ latent = latent.clone().detach()
+ for i in tqdm(range(num_inv_steps)):
+ t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
+ noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
+ latent = next_step(noise_pred, t, latent, ddim_scheduler)
+ all_latent.append(latent)
+ return all_latent
+
+
+@torch.no_grad()
+def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
+ ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
+ return ddim_latents
diff --git a/app.py b/app.py
index 82e03a5dc174394511d23e071622c24224975cce..6f2b441e38b276f332ad3c63b41c7b3c4f8b6dbd 100755
--- a/app.py
+++ b/app.py
@@ -70,13 +70,13 @@ with gr.Blocks(css='style.css') as demo:
with gr.Tabs():
with gr.TabItem('Train'):
create_training_demo(trainer, pipe)
- with gr.TabItem('Run'):
- create_inference_demo(pipe, HF_TOKEN)
- with gr.TabItem('Upload'):
- gr.Markdown('''
- - You can use this tab to upload models later if you choose not to upload models in training time or if upload in training time failed.
- ''')
- create_upload_demo(HF_TOKEN)
+ # with gr.TabItem('Run'):
+ # create_inference_demo(pipe, HF_TOKEN)
+ # with gr.TabItem('Upload'):
+ # gr.Markdown('''
+ # - You can use this tab to upload models later if you choose not to upload models in training time or if upload in training time failed.
+ # ''')
+ # create_upload_demo(HF_TOKEN)
if not HF_TOKEN:
show_warning(HF_TOKEN_NOT_SPECIFIED_WARNING)
diff --git a/app_inference.py b/app_inference.py
old mode 100755
new mode 100644
diff --git a/app_upload.py b/app_upload.py
old mode 100755
new mode 100644
index f672f555512b456d95d8f674fa832b1c9bf34309..f839c0c33c1ab8a43bc269ede0af920e61ef76cc
--- a/app_upload.py
+++ b/app_upload.py
@@ -75,7 +75,7 @@ def create_upload_demo(hf_token: str | None) -> gr.Blocks:
visible=False if hf_token else True)
upload_button = gr.Button('Upload')
gr.Markdown(f'''
- - You can upload your trained model to your personal profile (i.e. https://huggingface.co/{{your_username}}/{{model_name}}) or to the public [Tune-A-Video Library](https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}) (i.e. https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}/{{model_name}}).
+ - You can upload your trained model to your personal profile (i.e. https://huggingface.co/{{your_username}}/{{model_name}}) or to the public [Video-P2P Library](https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}) (i.e. https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}/{{model_name}}).
''')
with gr.Box():
gr.Markdown('Output message')
diff --git a/constants.py b/constants.py
index 9fb6e1f7ea852e729e950861e4e5beb4e1e38b75..ae35fb9773b4d6c926ca7d3535681758d521c872 100644
--- a/constants.py
+++ b/constants.py
@@ -3,8 +3,8 @@ import enum
class UploadTarget(enum.Enum):
PERSONAL_PROFILE = 'Personal Profile'
- MODEL_LIBRARY = 'Tune-A-Video Library'
+ MODEL_LIBRARY = 'Video-P2P Library'
-MODEL_LIBRARY_ORG_NAME = 'Tune-A-Video-library'
-SAMPLE_MODEL_REPO = 'Tune-A-Video-library/a-man-is-surfing'
+MODEL_LIBRARY_ORG_NAME = 'Video-P2P-library'
+SAMPLE_MODEL_REPO = 'Video-P2P-library/a-man-is-surfing'
diff --git a/trainer.py b/trainer.py
index 5d61d35b6f32d50c0770898e7314d2d68565f793..57de6edd0fdcbd8e03d59375123333ba0ad35192 100644
--- a/trainer.py
+++ b/trainer.py
@@ -103,7 +103,7 @@ class Trainer:
self.join_model_library_org(
self.hf_token if self.hf_token else input_token)
- config = OmegaConf.load('Tune-A-Video/configs/man-surfing.yaml')
+ config = OmegaConf.load('Video-P2P/configs/man-surfing-tune.yaml')
config.pretrained_model_path = self.download_base_model(base_model)
config.output_dir = output_dir.as_posix()
config.train_data.video_path = training_video.name # type: ignore
@@ -133,7 +133,7 @@ class Trainer:
with open(config_path, 'w') as f:
OmegaConf.save(config, f)
- command = f'accelerate launch Tune-A-Video/train_tuneavideo.py --config {config_path}'
+ command = f'accelerate launch Video-P2P/run_tuning.py --config {config_path}'
subprocess.run(shlex.split(command))
save_model_card(save_dir=output_dir,
base_model=base_model,