Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
import time | |
from datetime import datetime | |
import logging | |
from pathlib import Path | |
import requests | |
import json | |
import numpy as np | |
import pandas as pd | |
import spacy | |
from sentence_transformers import CrossEncoder | |
import litellm | |
# from litellm import completion | |
from tqdm import tqdm | |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig | |
# from accelerate import PartialState | |
# from accelerate.inference import prepare_pippy | |
import torch | |
import cohere | |
from openai import OpenAI | |
import src.backend.util as util | |
import src.envs as envs | |
litellm.set_verbose=False | |
# Set up basic configuration for logging | |
logging.basicConfig(level=logging.INFO, | |
format='%(asctime)s - %(levelname)s - %(message)s') | |
# Load spacy model for word tokenization | |
nlp = spacy.load("en_core_web_sm") | |
os.environ["HUGGINGFACE_API_KEY"] = envs.TOKEN | |
def load_evaluation_model(model_path): | |
"""Load the evaluation model from the given path | |
Args: | |
model_path (str): Path to the evaluation model | |
Returns: | |
CrossEncoder: The evaluation model | |
""" | |
model = CrossEncoder(model_path) | |
return model | |
class ModelLoadingException(Exception): | |
"""Exception raised for errors in loading a model. | |
Attributes: | |
model_id (str): The model identifier. | |
revision (str): The model revision. | |
""" | |
def __init__(self, model_id, revision, messages="Error initializing model"): | |
self.model_id = model_id | |
self.revision = revision | |
super().__init__(f"{messages} id={model_id} revision={revision}") | |
class SummaryGenerator: | |
"""A class to generate summaries using a causal language model. | |
Attributes: | |
model (str): huggingface/{model_id} | |
api_base (str): /static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2F%7Bmodel_id%7D%3C%2Fspan%3E%3C!-- HTML_TAG_END --> | |
summaries_df (DataFrame): DataFrame to store generated summaries. | |
revision (str): Model revision. | |
avg_length (float): Average length of summaries. | |
answer_rate (float): Rate of non-empty summaries. | |
""" | |
def __init__(self, model_id, revision): | |
""" | |
Initializes the SummaryGenerator with a model. | |
Args: | |
model_id (str): Identifier for the model. | |
revision (str): Revision of the model. | |
""" | |
self.model_id = model_id | |
self.model = f"huggingface/{model_id}" | |
self.api_base = f"/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2F%3Cspan class="hljs-subst">{model_id}" | |
self.summaries_df = pd.DataFrame() | |
self.revision = revision | |
self.avg_length = None | |
self.answer_rate = None | |
self.exceptions = None | |
self.local_model = None | |
def generate_summaries(self, df, save_path=None): | |
"""Generate summaries for a given DataFrame of source docs. | |
Args: | |
df (DataFrame): DataFrame containing source docs. | |
Returns: | |
summaries_df (DataFrame): Generated summaries by the model. | |
""" | |
exceptions = [] | |
if (save_path is not None) and os.path.exists(save_path): | |
self.summaries_df = pd.read_csv(save_path) | |
print(f'Loaded generated summaries from {save_path}') | |
else: | |
source, summary, dataset = [], [], [] | |
print(f"Total: {df.shape[0]}") | |
for index, row in tqdm(df.iterrows(), total=df.shape[0]): | |
_source = row['text'] | |
_dataset = row['dataset'] | |
system_prompt = envs.SYSTEM_PROMPT | |
user_prompt = f"{envs.USER_PROMPT}\nPassage:\n{_source}" | |
while True: | |
try: | |
_summary = self.generate_summary(system_prompt, user_prompt) | |
# print(f"Finish index {index}") | |
break | |
except Exception as e: | |
if 'Rate limit reached' in str(e): | |
wait_time = 3660 | |
current_time = datetime.now().strftime('%H:%M:%S') | |
print(f"Rate limit hit at {current_time}. Waiting for 1 hour before retrying...") | |
time.sleep(wait_time) | |
elif 'is currently loading' in str(e): | |
wait_time = 200 | |
print(f"Model is loading, wait for {wait_time}") | |
time.sleep(wait_time) | |
else: | |
print(f"Error at index {index}: {e}") | |
_summary = "" | |
exceptions.append(index) | |
break | |
summary.append(_summary) | |
source.append(_source) | |
dataset.append(_dataset) | |
# Sleep to prevent hitting rate limits too frequently | |
time.sleep(1) | |
self.summaries_df = pd.DataFrame(list(zip(source, summary, dataset)), | |
columns=["source", "summary", "dataset"]) | |
if save_path is not None: | |
print(f'Save summaries to {save_path}') | |
fpath = Path(save_path) | |
fpath.parent.mkdir(parents=True, exist_ok=True) | |
self.summaries_df.to_csv(fpath) | |
self.exceptions = exceptions | |
self._compute_avg_length() | |
self._compute_answer_rate() | |
return self.summaries_df | |
def generate_summary(self, system_prompt: str, user_prompt: str): | |
# Using Together AI API | |
if 'mixtral' in self.model_id.lower() or 'dbrx' in self.model_id.lower() or 'wizardlm' in self.model_id.lower(): # For mixtral and dbrx models, use Together AI API | |
suffix = "completions" if ('mixtral' in self.model_id.lower() or 'base' in self.model_id.lower()) else "chat/completions" | |
url = f"https://api.together.xyz/v1/{suffix}" | |
payload = { | |
"model": self.model_id, | |
# "max_tokens": 4096, | |
'max_new_tokens': 250, | |
"temperature": 0.0, | |
'repetition_penalty': 1.1 if 'mixtral' in self.model_id.lower() else 1 | |
} | |
if 'mixtral' in self.model_id.lower(): | |
# payload['prompt'] = user_prompt | |
# payload['prompt'] = "Write a summary of the following passage:\nPassage:\n" + user_prompt.split('Passage:\n')[-1] + '\n\nSummary:' | |
payload['prompt'] = 'You must stick to the passage provided. Provide a concise summary of the following passage, covering the core pieces of information described:\nPassage:\n' + user_prompt.split('Passage:\n')[-1] + '\n\nSummary:' | |
print(payload) | |
else: | |
payload['messages'] = [{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": user_prompt}] | |
headers = { | |
"accept": "application/json", | |
"content-type": "application/json", | |
"Authorization": f"Bearer {os.environ['TOGETHER_API_KEY']}" | |
} | |
response = requests.post(url, json=payload, headers=headers) | |
try: | |
result = json.loads(response.text) | |
# print(result) | |
result = result["choices"][0] | |
if 'message' in result: | |
result = result["message"]["content"].strip() | |
else: | |
result = result["text"] | |
result_candidates = [result_cancdidate for result_cancdidate in result.split('\n\n') if len(result_cancdidate) > 0] | |
result = result_candidates[0] | |
print(result) | |
except: | |
print(response) | |
result = '' | |
return result | |
# Using OpenAI API | |
elif 'gpt' in self.model_id.lower(): | |
response = litellm.completion( | |
model=self.model_id.replace('openai/',''), | |
messages=[{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": user_prompt}], | |
temperature=0.0, | |
max_tokens=250, | |
) | |
result = response['choices'][0]['message']['content'] | |
print(result) | |
return result | |
# Using HF API or download checkpoints | |
if self.local_model is None: | |
try: # try use HuggingFace API | |
response = litellm.completion( | |
model='command-r-plus' if 'command' in self.model else self.model, | |
messages=[{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": user_prompt}], | |
temperature=0.0, | |
max_tokens=1024, | |
api_base=self.api_base, | |
) | |
result = response['choices'][0]['message']['content'] | |
except: # fail to call api. run it locally. | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, trust_remote_code=True) | |
print("Tokenizer loaded") | |
self.local_model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=True, device_map="auto", torch_dtype="auto") | |
print("Local model loaded") | |
# Using local model | |
if self.local_model: # cannot call API. using local model | |
messages=[ | |
{"role": "system", "content": system_prompt}, # gemma-1.1 does not accept system role | |
{"role": "user", "content": user_prompt} | |
], | |
prompt = self.tokenizer.apply_chat_template(messages,add_generation_prompt=True, tokenize=False) | |
print(prompt) | |
input_ids = self.tokenizer(prompt, return_tensors="pt").to('cuda') | |
with torch.no_grad(): | |
outputs = self.local_model.generate(**input_ids, max_new_tokens=250, do_sample=True, temperature=0.01, pad_token_id=self.tokenizer.eos_token_id) | |
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
result = result.replace(prompt[0], '') | |
print(result) | |
return result | |
def _compute_avg_length(self): | |
""" | |
Compute the average length of non-empty summaries using SpaCy. | |
""" | |
total_word_count = 0 | |
total_count = 0 | |
for summary in self.summaries_df['summary']: | |
if util.is_summary_valid(summary): | |
doc = nlp(summary) | |
words = [token.text for token in doc if token.is_alpha] | |
total_word_count += len(words) | |
total_count += 1 | |
self.avg_length = 0 if total_count == 0 else total_word_count / total_count | |
def _compute_answer_rate(self): | |
""" | |
Compute the rate of non-empty summaries. | |
""" | |
valid_count = sum(1 for summary in self.summaries_df['summary'] | |
if util.is_summary_valid(summary)) | |
total_count = len(self.summaries_df) | |
self.answer_rate = 0 if total_count == 0 else valid_count / total_count | |
class EvaluationModel: | |
"""A class to evaluate generated summaries. | |
Attributes: | |
model (CrossEncoder): The evaluation model. | |
scores (list): List of evaluation scores. | |
accuracy (float): Accuracy of the summaries. | |
hallucination_rate (float): Rate of hallucination in summaries. | |
""" | |
def __init__(self, model_path): | |
""" | |
Initializes the EvaluationModel with a CrossEncoder model. | |
Args: | |
model_path (str): Path to the CrossEncoder model. | |
""" | |
self.model = load_evaluation_model(model_path) | |
self.scores = [] | |
self.factual_consistency_rate = None | |
self.hallucination_rate = None | |
def evaluate_hallucination(self, summaries_df): | |
""" | |
Evaluate the hallucination rate in summaries. Updates the 'scores' attribute | |
of the instance with the computed scores. | |
Args: | |
summaries_df (DataFrame): DataFrame containing source docs and summaries. | |
Returns: | |
list: List of hallucination scores. Also updates the 'scores' attribute of the instance. | |
""" | |
hem_scores = [] | |
sources = [] | |
summaries = [] | |
source_summary_pairs = util.create_pairs(summaries_df) | |
for doc, summary in tqdm(source_summary_pairs, desc="Evaluating hallucinations"): | |
if util.is_summary_valid(summary): | |
try: | |
# summary_pieces = summary.split('\n') | |
# summary = summary_pieces[0] if len(summary_pieces[0].strip()) > 0 else summary_pieces[1] | |
summary = summary.replace('<bos>','').replace('<eos>','') | |
# print([doc, summary]) | |
# print(self.model.predict([doc, summary])) | |
score = self.model.predict([doc, summary])# [0] | |
if not isinstance(score, float): | |
try: | |
score = score.item() | |
except: | |
logging.warning(f"Score type mismatch: Expected float, got {type(score)}.") | |
continue | |
hem_scores.append(score) | |
sources.append(doc) | |
summaries.append(summary) | |
except Exception as e: | |
logging.error(f"Error while running HEM: {e}") | |
raise | |
self.scores = hem_scores | |
eval_results = {'source': sources, 'summary': summaries, 'HEM scores': hem_scores} | |
return hem_scores, eval_results | |
def compute_factual_consistency_rate(self, threshold=0.5): | |
""" | |
Compute the factual consistency rate of the evaluated summaries based on | |
the previously calculated scores. This method relies on the 'scores' | |
attribute being populated, typically via the 'evaluate_hallucination' method. | |
Returns: | |
float: Factual Consistency Rate. Also updates the 'factual_consistency_rate' | |
and 'hallucination_rate' attributes of the instance. | |
Raises: | |
ValueError: If scores have not been calculated prior to calling this method. | |
""" | |
if not self.scores: | |
error_msg = "Scores not calculated. Call evaluate_hallucination() first." | |
logging.error(error_msg) | |
raise ValueError(error_msg) | |
# Use threshold of 0.5 to compute factual_consistency_rate | |
num_above_threshold = sum(score >= threshold for score in self.scores) | |
num_total = len(self.scores) | |
if not num_total: | |
raise ValueError("No scores available to compute factual consistency rate.") | |
self.factual_consistency_rate = (num_above_threshold / num_total) * 100 | |
self.hallucination_rate = 100 - self.factual_consistency_rate | |
return self.factual_consistency_rate | |