|
import cv2 |
|
import time |
|
import numpy as np |
|
import mediapipe as mp |
|
from mediapipe.python.solutions.drawing_utils import _normalized_to_pixel_coordinates as denormalize_coordinates |
|
|
|
|
|
def get_mediapipe_app( |
|
max_num_faces=1, |
|
refine_landmarks=True, |
|
min_detection_confidence=0.5, |
|
min_tracking_confidence=0.5, |
|
): |
|
"""Initialize and return Mediapipe FaceMesh Solution Graph object""" |
|
face_mesh = mp.solutions.face_mesh.FaceMesh( |
|
max_num_faces=max_num_faces, |
|
refine_landmarks=refine_landmarks, |
|
min_detection_confidence=min_detection_confidence, |
|
min_tracking_confidence=min_tracking_confidence, |
|
) |
|
|
|
return face_mesh |
|
|
|
|
|
def distance(point_1, point_2): |
|
"""Calculate l2-norm between two points""" |
|
dist = sum([(i - j) ** 2 for i, j in zip(point_1, point_2)]) ** 0.5 |
|
return dist |
|
|
|
|
|
def get_ear(landmarks, refer_idxs, frame_width, frame_height): |
|
""" |
|
Calculate Eye Aspect Ratio for one eye. |
|
|
|
Args: |
|
landmarks: (list) Detected landmarks list |
|
refer_idxs: (list) Index positions of the chosen landmarks |
|
in order P1, P2, P3, P4, P5, P6 |
|
|
|
frame_width: (int) Width of captured frame |
|
frame_height: (int) Height of captured frame |
|
|
|
Returns: |
|
ear: (float) Eye aspect ratio |
|
""" |
|
try: |
|
|
|
coords_points = [] |
|
for i in refer_idxs: |
|
lm = landmarks[i] |
|
coord = denormalize_coordinates(lm.x, lm.y, frame_width, frame_height) |
|
coords_points.append(coord) |
|
|
|
|
|
P2_P6 = distance(coords_points[1], coords_points[5]) |
|
P3_P5 = distance(coords_points[2], coords_points[4]) |
|
P1_P4 = distance(coords_points[0], coords_points[3]) |
|
|
|
|
|
ear = (P2_P6 + P3_P5) / (2.0 * P1_P4) |
|
|
|
except: |
|
ear = 0.0 |
|
coords_points = None |
|
|
|
return ear, coords_points |
|
|
|
|
|
def calculate_avg_ear(landmarks, left_eye_idxs, right_eye_idxs, image_w, image_h): |
|
|
|
|
|
left_ear, left_lm_coordinates = get_ear(landmarks, left_eye_idxs, image_w, image_h) |
|
right_ear, right_lm_coordinates = get_ear(landmarks, right_eye_idxs, image_w, image_h) |
|
Avg_EAR = (left_ear + right_ear) / 2.0 |
|
|
|
return Avg_EAR, (left_lm_coordinates, right_lm_coordinates) |
|
|
|
|
|
def plot_eye_landmarks(frame, left_lm_coordinates, right_lm_coordinates, color): |
|
for lm_coordinates in [left_lm_coordinates, right_lm_coordinates]: |
|
if lm_coordinates: |
|
for coord in lm_coordinates: |
|
cv2.circle(frame, coord, 2, color, -1) |
|
|
|
frame = cv2.flip(frame, 1) |
|
return frame |
|
|
|
|
|
def plot_text(image, text, origin, color, font=cv2.FONT_HERSHEY_SIMPLEX, fntScale=0.8, thickness=2): |
|
image = cv2.putText(image, text, origin, font, fntScale, color, thickness) |
|
return image |
|
|
|
|
|
class VideoFrameHandler: |
|
def __init__(self): |
|
""" |
|
Initialize the necessary constants, mediapipe app |
|
and tracker variables |
|
""" |
|
|
|
self.eye_idxs = { |
|
"left": [362, 385, 387, 263, 373, 380], |
|
"right": [33, 160, 158, 133, 153, 144], |
|
} |
|
|
|
|
|
|
|
self.RED = (0, 0, 255) |
|
self.GREEN = (0, 255, 0) |
|
|
|
|
|
self.facemesh_model = get_mediapipe_app() |
|
|
|
|
|
self.state_tracker = { |
|
"start_time": time.perf_counter(), |
|
"DROWSY_TIME": 0.0, |
|
"COLOR": self.GREEN, |
|
"play_alarm": False, |
|
} |
|
|
|
self.EAR_txt_pos = (10, 30) |
|
|
|
def process(self, frame: np.array, thresholds: dict): |
|
""" |
|
This function is used to implement our Drowsy detection algorithm |
|
|
|
Args: |
|
frame: (np.array) Input frame matrix. |
|
thresholds: (dict) Contains the two threshold values |
|
WAIT_TIME and EAR_THRESH. |
|
|
|
Returns: |
|
The processed frame and a boolean flag to |
|
indicate if the alarm should be played or not. |
|
""" |
|
|
|
|
|
|
|
frame.flags.writeable = False |
|
frame_h, frame_w, _ = frame.shape |
|
|
|
DROWSY_TIME_txt_pos = (10, int(frame_h // 2 * 1.7)) |
|
ALM_txt_pos = (10, int(frame_h // 2 * 1.85)) |
|
|
|
results = self.facemesh_model.process(frame) |
|
|
|
if results.multi_face_landmarks: |
|
landmarks = results.multi_face_landmarks[0].landmark |
|
EAR, coordinates = calculate_avg_ear(landmarks, self.eye_idxs["left"], self.eye_idxs["right"], frame_w, frame_h) |
|
frame = plot_eye_landmarks(frame, coordinates[0], coordinates[1], self.state_tracker["COLOR"]) |
|
|
|
if EAR < thresholds["EAR_THRESH"]: |
|
|
|
|
|
|
|
end_time = time.perf_counter() |
|
|
|
self.state_tracker["DROWSY_TIME"] += end_time - self.state_tracker["start_time"] |
|
self.state_tracker["start_time"] = end_time |
|
self.state_tracker["COLOR"] = self.RED |
|
|
|
if self.state_tracker["DROWSY_TIME"] >= thresholds["WAIT_TIME"]: |
|
self.state_tracker["play_alarm"] = True |
|
plot_text(frame, "WAKE UP! WAKE UP", ALM_txt_pos, self.state_tracker["COLOR"]) |
|
|
|
else: |
|
self.state_tracker["start_time"] = time.perf_counter() |
|
self.state_tracker["DROWSY_TIME"] = 0.0 |
|
self.state_tracker["COLOR"] = self.GREEN |
|
self.state_tracker["play_alarm"] = False |
|
|
|
EAR_txt = f"EAR: {round(EAR, 2)}" |
|
DROWSY_TIME_txt = f"DROWSY: {round(self.state_tracker['DROWSY_TIME'], 3)} Secs" |
|
plot_text(frame, EAR_txt, self.EAR_txt_pos, self.state_tracker["COLOR"]) |
|
plot_text(frame, DROWSY_TIME_txt, DROWSY_TIME_txt_pos, self.state_tracker["COLOR"]) |
|
|
|
else: |
|
self.state_tracker["start_time"] = time.perf_counter() |
|
self.state_tracker["DROWSY_TIME"] = 0.0 |
|
self.state_tracker["COLOR"] = self.GREEN |
|
self.state_tracker["play_alarm"] = False |
|
|
|
|
|
frame = cv2.flip(frame, 1) |
|
|
|
return frame, self.state_tracker["play_alarm"] |
|
|