cyberosa
commited on
Commit
·
ac62b55
1
Parent(s):
af4f5ae
Prints and formatting
Browse files- app.py +89 -39
- tabs/dashboard.py +3 -1
- tabs/run_benchmark.py +15 -5
app.py
CHANGED
@@ -8,7 +8,7 @@ from tabs.faq import (
|
|
8 |
about_olas_predict_benchmark,
|
9 |
about_olas_predict,
|
10 |
about_the_dataset,
|
11 |
-
about_the_tools
|
12 |
)
|
13 |
from tabs.howto_benchmark import how_to_run
|
14 |
from tabs.run_benchmark import run_benchmark_main
|
@@ -17,17 +17,36 @@ from tabs.run_benchmark import run_benchmark_main
|
|
17 |
demo = gr.Blocks()
|
18 |
|
19 |
|
20 |
-
def run_benchmark_gradio(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
"""Run the benchmark using inputs."""
|
22 |
if tool_name is None:
|
23 |
return "Please enter the name of your tool."
|
24 |
-
if
|
|
|
|
|
|
|
|
|
25 |
return "Please enter either OpenAI or Anthropic or OpenRouter API key."
|
26 |
-
|
27 |
-
result = run_benchmark_main(
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
# get the results file in the results directory
|
30 |
-
fns = glob(
|
31 |
|
32 |
print(f"Number of files in results directory: {len(fns)}")
|
33 |
|
@@ -35,10 +54,10 @@ def run_benchmark_gradio(tool_name, model_name, num_questions, openai_api_key, a
|
|
35 |
files = [Path(file) for file in fns]
|
36 |
|
37 |
# get results and summary files
|
38 |
-
results_files = [file for file in files if
|
39 |
|
40 |
# the other file is the summary file
|
41 |
-
summary_files = [file for file in files if
|
42 |
|
43 |
print(results_files, summary_files)
|
44 |
|
@@ -51,13 +70,17 @@ def run_benchmark_gradio(tool_name, model_name, num_questions, openai_api_key, a
|
|
51 |
summary_df = summary_df.round(4)
|
52 |
|
53 |
return gr.Dataframe(value=results_df), gr.Dataframe(value=summary_df)
|
54 |
-
|
55 |
-
return gr.Textbox(
|
|
|
|
|
56 |
|
57 |
|
58 |
with demo:
|
59 |
gr.HTML("<h1>Olas Predict Benchmark</hjson>")
|
60 |
-
gr.Markdown(
|
|
|
|
|
61 |
|
62 |
with gr.Tabs() as tabs:
|
63 |
# first tab - leaderboard
|
@@ -82,7 +105,6 @@ with demo:
|
|
82 |
with gr.Accordion("About Olas", open=False):
|
83 |
gr.Markdown(about_olas_predict)
|
84 |
|
85 |
-
|
86 |
# third tab - how to run the benchmark
|
87 |
with gr.TabItem("🚀 Contribute"):
|
88 |
gr.Markdown(how_to_run)
|
@@ -97,34 +119,53 @@ with demo:
|
|
97 |
# "prediction-online-summarized-info",
|
98 |
# "prediction-offline-sme",
|
99 |
# "prediction-online-sme",
|
100 |
-
|
101 |
-
|
102 |
# "prediction-url-cot-claude",
|
103 |
# "prediction-request-rag-cohere",
|
104 |
# "prediction-with-research-conservative",
|
105 |
# "prediction-with-research-bold",
|
106 |
-
],
|
107 |
-
|
108 |
-
"
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
with gr.Row():
|
118 |
-
openai_api_key = gr.Textbox(
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
with gr.Row():
|
122 |
num_questions = gr.Slider(
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
with gr.Row():
|
129 |
run_button = gr.Button("Run Benchmark")
|
130 |
with gr.Row():
|
@@ -133,10 +174,19 @@ with demo:
|
|
133 |
with gr.Row():
|
134 |
with gr.Accordion("Summary", open=False):
|
135 |
summary = gr.Dataframe()
|
136 |
-
|
137 |
-
run_button.click(
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
|
142 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
8 |
about_olas_predict_benchmark,
|
9 |
about_olas_predict,
|
10 |
about_the_dataset,
|
11 |
+
about_the_tools,
|
12 |
)
|
13 |
from tabs.howto_benchmark import how_to_run
|
14 |
from tabs.run_benchmark import run_benchmark_main
|
|
|
17 |
demo = gr.Blocks()
|
18 |
|
19 |
|
20 |
+
def run_benchmark_gradio(
|
21 |
+
tool_name,
|
22 |
+
model_name,
|
23 |
+
num_questions,
|
24 |
+
openai_api_key,
|
25 |
+
anthropic_api_key,
|
26 |
+
openrouter_api_key,
|
27 |
+
):
|
28 |
"""Run the benchmark using inputs."""
|
29 |
if tool_name is None:
|
30 |
return "Please enter the name of your tool."
|
31 |
+
if (
|
32 |
+
openai_api_key is None
|
33 |
+
and anthropic_api_key is None
|
34 |
+
and openrouter_api_key is None
|
35 |
+
):
|
36 |
return "Please enter either OpenAI or Anthropic or OpenRouter API key."
|
37 |
+
|
38 |
+
result = run_benchmark_main(
|
39 |
+
tool_name,
|
40 |
+
model_name,
|
41 |
+
num_questions,
|
42 |
+
openai_api_key,
|
43 |
+
anthropic_api_key,
|
44 |
+
openrouter_api_key,
|
45 |
+
)
|
46 |
+
|
47 |
+
if result == "completed":
|
48 |
# get the results file in the results directory
|
49 |
+
fns = glob("results/*.csv")
|
50 |
|
51 |
print(f"Number of files in results directory: {len(fns)}")
|
52 |
|
|
|
54 |
files = [Path(file) for file in fns]
|
55 |
|
56 |
# get results and summary files
|
57 |
+
results_files = [file for file in files if "results" in file.name]
|
58 |
|
59 |
# the other file is the summary file
|
60 |
+
summary_files = [file for file in files if "summary" in file.name]
|
61 |
|
62 |
print(results_files, summary_files)
|
63 |
|
|
|
70 |
summary_df = summary_df.round(4)
|
71 |
|
72 |
return gr.Dataframe(value=results_df), gr.Dataframe(value=summary_df)
|
73 |
+
|
74 |
+
return gr.Textbox(
|
75 |
+
label="Benchmark Result", value=result, interactive=False
|
76 |
+
), gr.Textbox(label="Summary", value="")
|
77 |
|
78 |
|
79 |
with demo:
|
80 |
gr.HTML("<h1>Olas Predict Benchmark</hjson>")
|
81 |
+
gr.Markdown(
|
82 |
+
"Leaderboard showing the performance of Olas Predict tools on the Autocast dataset and overview of the project."
|
83 |
+
)
|
84 |
|
85 |
with gr.Tabs() as tabs:
|
86 |
# first tab - leaderboard
|
|
|
105 |
with gr.Accordion("About Olas", open=False):
|
106 |
gr.Markdown(about_olas_predict)
|
107 |
|
|
|
108 |
# third tab - how to run the benchmark
|
109 |
with gr.TabItem("🚀 Contribute"):
|
110 |
gr.Markdown(how_to_run)
|
|
|
119 |
# "prediction-online-summarized-info",
|
120 |
# "prediction-offline-sme",
|
121 |
# "prediction-online-sme",
|
122 |
+
"prediction-request-rag",
|
123 |
+
"prediction-request-reasoning",
|
124 |
# "prediction-url-cot-claude",
|
125 |
# "prediction-request-rag-cohere",
|
126 |
# "prediction-with-research-conservative",
|
127 |
# "prediction-with-research-bold",
|
128 |
+
],
|
129 |
+
label="Tool Name",
|
130 |
+
info="Choose the tool to run",
|
131 |
+
)
|
132 |
+
model_name = gr.Dropdown(
|
133 |
+
[
|
134 |
+
"gpt-3.5-turbo-0125",
|
135 |
+
"gpt-4-0125-preview",
|
136 |
+
"claude-3-haiku-20240307",
|
137 |
+
"claude-3-sonnet-20240229",
|
138 |
+
"claude-3-opus-20240229",
|
139 |
+
"databricks/dbrx-instruct:nitro",
|
140 |
+
"nousresearch/nous-hermes-2-mixtral-8x7b-sft",
|
141 |
+
# "cohere/command-r-plus",
|
142 |
+
],
|
143 |
+
label="Model Name",
|
144 |
+
info="Choose the model to use",
|
145 |
+
)
|
146 |
with gr.Row():
|
147 |
+
openai_api_key = gr.Textbox(
|
148 |
+
label="OpenAI API Key",
|
149 |
+
placeholder="Enter your OpenAI API key here",
|
150 |
+
type="password",
|
151 |
+
)
|
152 |
+
anthropic_api_key = gr.Textbox(
|
153 |
+
label="Anthropic API Key",
|
154 |
+
placeholder="Enter your Anthropic API key here",
|
155 |
+
type="password",
|
156 |
+
)
|
157 |
+
openrouter_api_key = gr.Textbox(
|
158 |
+
label="OpenRouter API Key",
|
159 |
+
placeholder="Enter your OpenRouter API key here",
|
160 |
+
type="password",
|
161 |
+
)
|
162 |
with gr.Row():
|
163 |
num_questions = gr.Slider(
|
164 |
+
minimum=1,
|
165 |
+
maximum=340,
|
166 |
+
value=10,
|
167 |
+
label="Number of questions to run the benchmark on",
|
168 |
+
)
|
169 |
with gr.Row():
|
170 |
run_button = gr.Button("Run Benchmark")
|
171 |
with gr.Row():
|
|
|
174 |
with gr.Row():
|
175 |
with gr.Accordion("Summary", open=False):
|
176 |
summary = gr.Dataframe()
|
177 |
+
|
178 |
+
run_button.click(
|
179 |
+
run_benchmark_gradio,
|
180 |
+
inputs=[
|
181 |
+
tool_name,
|
182 |
+
model_name,
|
183 |
+
num_questions,
|
184 |
+
openai_api_key,
|
185 |
+
anthropic_api_key,
|
186 |
+
openrouter_api_key,
|
187 |
+
],
|
188 |
+
outputs=[result, summary],
|
189 |
+
)
|
190 |
|
191 |
|
192 |
+
demo.queue(default_concurrency_limit=40).launch()
|
tabs/dashboard.py
CHANGED
@@ -3,8 +3,10 @@ import pandas as pd
|
|
3 |
|
4 |
csv_file_path = "formatted_data.csv"
|
5 |
|
|
|
6 |
def return_df():
|
7 |
# Reading the CSV file
|
|
|
8 |
df = pd.read_csv(csv_file_path)
|
9 |
|
10 |
# all floats to be rounded to 2 decimal places
|
@@ -12,4 +14,4 @@ def return_df():
|
|
12 |
return df
|
13 |
|
14 |
|
15 |
-
df = return_df()
|
|
|
3 |
|
4 |
csv_file_path = "formatted_data.csv"
|
5 |
|
6 |
+
|
7 |
def return_df():
|
8 |
# Reading the CSV file
|
9 |
+
print("Reading csv file with results")
|
10 |
df = pd.read_csv(csv_file_path)
|
11 |
|
12 |
# all floats to be rounded to 2 decimal places
|
|
|
14 |
return df
|
15 |
|
16 |
|
17 |
+
df = return_df()
|
tabs/run_benchmark.py
CHANGED
@@ -2,8 +2,17 @@ import os
|
|
2 |
from benchmark.run_benchmark import run_benchmark
|
3 |
|
4 |
|
5 |
-
def run_benchmark_main(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
"""Run the benchmark using the provided function and API key."""
|
|
|
|
|
7 |
# Empyt the results directory
|
8 |
os.system("rm -rf results/*")
|
9 |
|
@@ -30,7 +39,10 @@ def run_benchmark_main(tool_name, model_name, num_questions, openai_api_key, ant
|
|
30 |
else:
|
31 |
kwargs["llm_provider"] = "openrouter"
|
32 |
|
33 |
-
if
|
|
|
|
|
|
|
34 |
if not openai_api_key:
|
35 |
return f"Error: Tools that use RAG also require an OpenAI API Key"
|
36 |
|
@@ -39,12 +51,10 @@ def run_benchmark_main(tool_name, model_name, num_questions, openai_api_key, ant
|
|
39 |
kwargs["provide_source_links"] = True
|
40 |
|
41 |
print(f"Running benchmark")
|
42 |
-
|
43 |
# Run the benchmark
|
44 |
try:
|
45 |
run_benchmark(kwargs=kwargs)
|
46 |
return "completed"
|
47 |
except Exception as e:
|
48 |
return f"Error running benchmark: {e}"
|
49 |
-
|
50 |
-
|
|
|
2 |
from benchmark.run_benchmark import run_benchmark
|
3 |
|
4 |
|
5 |
+
def run_benchmark_main(
|
6 |
+
tool_name,
|
7 |
+
model_name,
|
8 |
+
num_questions,
|
9 |
+
openai_api_key,
|
10 |
+
anthropic_api_key,
|
11 |
+
openrouter_api_key,
|
12 |
+
):
|
13 |
"""Run the benchmark using the provided function and API key."""
|
14 |
+
|
15 |
+
print("Running benchmark for the provided api keys")
|
16 |
# Empyt the results directory
|
17 |
os.system("rm -rf results/*")
|
18 |
|
|
|
39 |
else:
|
40 |
kwargs["llm_provider"] = "openrouter"
|
41 |
|
42 |
+
if (
|
43 |
+
tool_name == "prediction-request-reasoning"
|
44 |
+
or tool_name == "prediction-request-rag"
|
45 |
+
):
|
46 |
if not openai_api_key:
|
47 |
return f"Error: Tools that use RAG also require an OpenAI API Key"
|
48 |
|
|
|
51 |
kwargs["provide_source_links"] = True
|
52 |
|
53 |
print(f"Running benchmark")
|
54 |
+
|
55 |
# Run the benchmark
|
56 |
try:
|
57 |
run_benchmark(kwargs=kwargs)
|
58 |
return "completed"
|
59 |
except Exception as e:
|
60 |
return f"Error running benchmark: {e}"
|
|
|
|