File size: 9,821 Bytes
891b88f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import Tuple\n",
    "\n",
    "from IPython.display import display\n",
    "from PIL import Image\n",
    "import numpy as np\n",
    "import torch as th\n",
    "import torch.nn.functional as F\n",
    "\n",
    "from glide_text2im.download import load_checkpoint\n",
    "from glide_text2im.model_creation import (\n",
    "    create_model_and_diffusion,\n",
    "    model_and_diffusion_defaults,\n",
    "    model_and_diffusion_defaults_upsampler\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# This notebook supports both CPU and GPU.\n",
    "# On CPU, generating one sample may take on the order of 20 minutes.\n",
    "# On a GPU, it should be under a minute.\n",
    "\n",
    "has_cuda = th.cuda.is_available()\n",
    "device = th.device('cpu' if not has_cuda else 'cuda')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create base model.\n",
    "options = model_and_diffusion_defaults()\n",
    "options['inpaint'] = True\n",
    "options['use_fp16'] = has_cuda\n",
    "options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling\n",
    "model, diffusion = create_model_and_diffusion(**options)\n",
    "model.eval()\n",
    "if has_cuda:\n",
    "    model.convert_to_fp16()\n",
    "model.to(device)\n",
    "model.load_state_dict(load_checkpoint('base-inpaint', device))\n",
    "print('total base parameters', sum(x.numel() for x in model.parameters()))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create upsampler model.\n",
    "options_up = model_and_diffusion_defaults_upsampler()\n",
    "options_up['inpaint'] = True\n",
    "options_up['use_fp16'] = has_cuda\n",
    "options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling\n",
    "model_up, diffusion_up = create_model_and_diffusion(**options_up)\n",
    "model_up.eval()\n",
    "if has_cuda:\n",
    "    model_up.convert_to_fp16()\n",
    "model_up.to(device)\n",
    "model_up.load_state_dict(load_checkpoint('upsample-inpaint', device))\n",
    "print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def show_images(batch: th.Tensor):\n",
    "    \"\"\" Display a batch of images inline. \"\"\"\n",
    "    scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()\n",
    "    reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])\n",
    "    display(Image.fromarray(reshaped.numpy()))\n",
    "\n",
    "def read_image(path: str, size: int = 256) -> Tuple[th.Tensor, th.Tensor]:\n",
    "    pil_img = Image.open(path).convert('RGB')\n",
    "    pil_img = pil_img.resize((size, size), resample=Image.BICUBIC)\n",
    "    img = np.array(pil_img)\n",
    "    return th.from_numpy(img)[None].permute(0, 3, 1, 2).float() / 127.5 - 1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Sampling parameters\n",
    "prompt = \"a corgi in a field\"\n",
    "batch_size = 1\n",
    "guidance_scale = 5.0\n",
    "\n",
    "# Tune this parameter to control the sharpness of 256x256 images.\n",
    "# A value of 1.0 is sharper, but sometimes results in grainy artifacts.\n",
    "upsample_temp = 0.997\n",
    "\n",
    "# Source image we are inpainting\n",
    "source_image_256 = read_image('grass.png', size=256)\n",
    "source_image_64 = read_image('grass.png', size=64)\n",
    "\n",
    "# The mask should always be a boolean 64x64 mask, and then we\n",
    "# can upsample it for the second stage.\n",
    "source_mask_64 = th.ones_like(source_image_64)[:, :1]\n",
    "source_mask_64[:, :, 20:] = 0\n",
    "source_mask_256 = F.interpolate(source_mask_64, (256, 256), mode='nearest')\n",
    "\n",
    "# Visualize the image we are inpainting\n",
    "show_images(source_image_256 * source_mask_256)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "##############################\n",
    "# Sample from the base model #\n",
    "##############################\n",
    "\n",
    "# Create the text tokens to feed to the model.\n",
    "tokens = model.tokenizer.encode(prompt)\n",
    "tokens, mask = model.tokenizer.padded_tokens_and_mask(\n",
    "    tokens, options['text_ctx']\n",
    ")\n",
    "\n",
    "# Create the classifier-free guidance tokens (empty)\n",
    "full_batch_size = batch_size * 2\n",
    "uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(\n",
    "    [], options['text_ctx']\n",
    ")\n",
    "\n",
    "# Pack the tokens together into model kwargs.\n",
    "model_kwargs = dict(\n",
    "    tokens=th.tensor(\n",
    "        [tokens] * batch_size + [uncond_tokens] * batch_size, device=device\n",
    "    ),\n",
    "    mask=th.tensor(\n",
    "        [mask] * batch_size + [uncond_mask] * batch_size,\n",
    "        dtype=th.bool,\n",
    "        device=device,\n",
    "    ),\n",
    "\n",
    "    # Masked inpainting image\n",
    "    inpaint_image=(source_image_64 * source_mask_64).repeat(full_batch_size, 1, 1, 1).to(device),\n",
    "    inpaint_mask=source_mask_64.repeat(full_batch_size, 1, 1, 1).to(device),\n",
    ")\n",
    "\n",
    "# Create an classifier-free guidance sampling function\n",
    "def model_fn(x_t, ts, **kwargs):\n",
    "    half = x_t[: len(x_t) // 2]\n",
    "    combined = th.cat([half, half], dim=0)\n",
    "    model_out = model(combined, ts, **kwargs)\n",
    "    eps, rest = model_out[:, :3], model_out[:, 3:]\n",
    "    cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0)\n",
    "    half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)\n",
    "    eps = th.cat([half_eps, half_eps], dim=0)\n",
    "    return th.cat([eps, rest], dim=1)\n",
    "\n",
    "def denoised_fn(x_start):\n",
    "    # Force the model to have the exact right x_start predictions\n",
    "    # for the part of the image which is known.\n",
    "    return (\n",
    "        x_start * (1 - model_kwargs['inpaint_mask'])\n",
    "        + model_kwargs['inpaint_image'] * model_kwargs['inpaint_mask']\n",
    "    )\n",
    "\n",
    "# Sample from the base model.\n",
    "model.del_cache()\n",
    "samples = diffusion.p_sample_loop(\n",
    "    model_fn,\n",
    "    (full_batch_size, 3, options[\"image_size\"], options[\"image_size\"]),\n",
    "    device=device,\n",
    "    clip_denoised=True,\n",
    "    progress=True,\n",
    "    model_kwargs=model_kwargs,\n",
    "    cond_fn=None,\n",
    "    denoised_fn=denoised_fn,\n",
    ")[:batch_size]\n",
    "model.del_cache()\n",
    "\n",
    "# Show the output\n",
    "show_images(samples)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "##############################\n",
    "# Upsample the 64x64 samples #\n",
    "##############################\n",
    "\n",
    "tokens = model_up.tokenizer.encode(prompt)\n",
    "tokens, mask = model_up.tokenizer.padded_tokens_and_mask(\n",
    "    tokens, options_up['text_ctx']\n",
    ")\n",
    "\n",
    "# Create the model conditioning dict.\n",
    "model_kwargs = dict(\n",
    "    # Low-res image to upsample.\n",
    "    low_res=((samples+1)*127.5).round()/127.5 - 1,\n",
    "\n",
    "    # Text tokens\n",
    "    tokens=th.tensor(\n",
    "        [tokens] * batch_size, device=device\n",
    "    ),\n",
    "    mask=th.tensor(\n",
    "        [mask] * batch_size,\n",
    "        dtype=th.bool,\n",
    "        device=device,\n",
    "    ),\n",
    "\n",
    "    # Masked inpainting image.\n",
    "    inpaint_image=(source_image_256 * source_mask_256).repeat(batch_size, 1, 1, 1).to(device),\n",
    "    inpaint_mask=source_mask_256.repeat(batch_size, 1, 1, 1).to(device),\n",
    ")\n",
    "\n",
    "def denoised_fn(x_start):\n",
    "    # Force the model to have the exact right x_start predictions\n",
    "    # for the part of the image which is known.\n",
    "    return (\n",
    "        x_start * (1 - model_kwargs['inpaint_mask'])\n",
    "        + model_kwargs['inpaint_image'] * model_kwargs['inpaint_mask']\n",
    "    )\n",
    "\n",
    "# Sample from the base model.\n",
    "model_up.del_cache()\n",
    "up_shape = (batch_size, 3, options_up[\"image_size\"], options_up[\"image_size\"])\n",
    "up_samples = diffusion_up.p_sample_loop(\n",
    "    model_up,\n",
    "    up_shape,\n",
    "    noise=th.randn(up_shape, device=device) * upsample_temp,\n",
    "    device=device,\n",
    "    clip_denoised=True,\n",
    "    progress=True,\n",
    "    model_kwargs=model_kwargs,\n",
    "    cond_fn=None,\n",
    "    denoised_fn=denoised_fn,\n",
    ")[:batch_size]\n",
    "model_up.del_cache()\n",
    "\n",
    "# Show the output\n",
    "show_images(up_samples)"
   ]
  }
 ],
 "metadata": {
  "interpreter": {
   "hash": "e7d6e62d90e7e85f9a0faa7f0b1d576302d7ae6108e9fe361594f8e1c8b05781"
  },
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}