import cv2 import torch import numpy as np import time from midas.model_loader import default_models, load_model import os import urllib.request MODEL_FILE_URL = { "midas_v21_small_256" : "https://github.com/isl-org/MiDaS/releases/download/v2_1/midas_v21_small_256.pt", "dpt_hybrid_384" : "https://github.com/isl-org/MiDaS/releases/download/v3/dpt_hybrid_384.pt", "dpt_large_384" : "https://github.com/isl-org/MiDaS/releases/download/v3/dpt_large_384.pt", "dpt_swin2_large_384" : "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin2_large_384.pt", "dpt_beit_large_512" : "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_512.pt", } class MonocularDepthEstimator: def __init__(self, model_type="midas_v21_small_256", model_weights_path="models/", optimize=False, side_by_side=False, height=None, square=False, grayscale=False): # model type # MiDaS 3.1: # For highest quality: dpt_beit_large_512 # For moderately less quality, but better speed-performance trade-off: dpt_swin2_large_384 # For embedded devices: dpt_swin2_tiny_256, dpt_levit_224 # For inference on Intel CPUs, OpenVINO may be used for the small legacy model: openvino_midas_v21_small .xml, .bin # MiDaS 3.0: # Legacy transformer models dpt_large_384 and dpt_hybrid_384 # MiDaS 2.1: # Legacy convolutional models midas_v21_384 and midas_v21_small_256 # params print("Initializing parameters and model...") self.is_optimize = optimize self.is_square = square self.is_grayscale = grayscale self.height = height self.side_by_side = side_by_side # select device self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("Running inference on : %s" % self.device) # loading model if not os.path.exists(model_weights_path+model_type+".pt"): print("Model file not found. Downloading...") # Download the model file urllib.request.urlretrieve(MODEL_FILE_URL[model_type], model_weights_path+model_type+".pt") print("Model file downloaded successfully.") self.model, self.transform, self.net_w, self.net_h = load_model(self.device, model_weights_path+model_type+".pt", model_type, optimize, height, square) print("Net width and height: ", (self.net_w, self.net_h)) def predict(self, image, model, target_size): # convert img to tensor and load to gpu img_tensor = torch.from_numpy(image).to(self.device).unsqueeze(0) if self.is_optimize and self.device == torch.device("cuda"): img_tensor = img_tensor.to(memory_format=torch.channels_last) img_tensor = img_tensor.half() prediction = model.forward(img_tensor) prediction = ( torch.nn.functional.interpolate( prediction.unsqueeze(1), size=target_size[::-1], mode="bicubic", align_corners=False, ) .squeeze() .cpu() .numpy() ) return prediction def process_prediction(self, depth_map): """ Take an RGB image and depth map and place them side by side. This includes a proper normalization of the depth map for better visibility. Args: original_img: the RGB image depth_img: the depth map is_grayscale: use a grayscale colormap? Returns: the image and depth map place side by side """ # normalizing depth image depth_min = depth_map.min() depth_max = depth_map.max() normalized_depth = 255 * (depth_map - depth_min) / (depth_max - depth_min) # normalized_depth *= 3 # grayscale_depthmap = np.repeat(np.expand_dims(normalized_depth, 2), 3, axis=2) / 3 grayscale_depthmap = np.repeat(np.expand_dims(normalized_depth, 2), 3, axis=2) depth_colormap = cv2.applyColorMap(np.uint8(grayscale_depthmap), cv2.COLORMAP_INFERNO) return normalized_depth/255, depth_colormap/255 def make_prediction(self, image): image = image.copy() with torch.no_grad(): original_image_rgb = np.flip(image, 2) # in [0, 255] (flip required to get RGB) # resizing the image to feed to the model image_tranformed = self.transform({"image": original_image_rgb/255})["image"] # monocular depth prediction pred = self.predict(image_tranformed, self.model, target_size=original_image_rgb.shape[1::-1]) # process the model predictions depthmap, depth_colormap = self.process_prediction(pred) return depthmap, depth_colormap def run(self, input_path): # input video cap = cv2.VideoCapture(input_path) # Check if camera opened successfully if not cap.isOpened(): print("Error opening video file") with torch.no_grad(): while cap.isOpened(): # Capture frame-by-frame inference_start_time = time.time() ret, frame = cap.read() if ret == True: _, depth_colormap = self.make_prediction(frame) inference_end_time = time.time() fps = round(1/(inference_end_time - inference_start_time)) cv2.putText(depth_colormap, f'FPS: {fps}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (10, 255, 100), 2) cv2.imshow('MiDaS Depth Estimation - Press Escape to close window ', depth_colormap) # Press ESC on keyboard to exit if cv2.waitKey(1) == 27: # Escape key break else: break # When everything done, release # the video capture object cap.release() # Closes all the frames cv2.destroyAllWindows() if __name__ == "__main__": # params INPUT_PATH = "assets/videos/testvideo2.mp4" os.environ['CUDA_VISIBLE_DEVICES'] = '0' # set torch options torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True depth_estimator = MonocularDepthEstimator(model_type="dpt_hybrid_384") depth_estimator.run(INPUT_PATH)