import cv2 import numpy as np from point_cloud_generator import PointCloudGenerator # pcd_generator = PointCloudGenerator() def resize(image): """ resize the input nd array """ h, w = image.shape[:2] if h > w: return cv2.resize(image, (480, 640)) else: return cv2.resize(image, (640, 480)) def get_masked_depth(depth_map, mask): masked_depth_map = depth_map*mask pixel_depth_vals = masked_depth_map[masked_depth_map>0] mean_depth = np.mean(pixel_depth_vals) return masked_depth_map, 1-mean_depth def draw_depth_info(image, depth_map, objects_data): image = image.copy() # object data -> [cls_id, cls_name, cls_center, cls_mask, cls_clr] for data in objects_data: center = data[2] mask = data[3] _, depth = get_masked_depth(depth_map, mask) cv2.putText(image, str(round(depth*10, 2))+'m', center, cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2) return image def generate_obj_pcd(depth_map, objects_data): objs_pcd = [] pcd_generator = PointCloudGenerator() for data in objects_data[:2]: mask = data[3] cls_clr = data[4] masked_depth = depth_map*mask # generating point cloud using masked depth pcd = pcd_generator.generate_point_cloud(masked_depth) objs_pcd.append((pcd, cls_clr)) return objs_pcd