|
|
|
|
|
import subprocess |
|
from pathlib import Path |
|
|
|
import pytest |
|
|
|
from ultralytics.yolo.utils import ONLINE, ROOT, SETTINGS |
|
|
|
WEIGHT_DIR = Path(SETTINGS['weights_dir']) |
|
TASK_ARGS = [ |
|
('detect', 'yolov8n', 'coco8.yaml'), ('segment', 'yolov8n-seg', 'coco8-seg.yaml'), |
|
('classify', 'yolov8n-cls', 'imagenet10'), ('pose', 'yolov8n-pose', 'coco8-pose.yaml')] |
|
EXPORT_ARGS = [ |
|
('yolov8n', 'torchscript'), ('yolov8n-seg', 'torchscript'), ('yolov8n-cls', 'torchscript'), |
|
('yolov8n-pose', 'torchscript')] |
|
|
|
|
|
def run(cmd): |
|
|
|
subprocess.run(cmd.split(), check=True) |
|
|
|
|
|
def test_special_modes(): |
|
run('yolo checks') |
|
run('yolo settings') |
|
run('yolo help') |
|
|
|
|
|
@pytest.mark.parametrize('task,model,data', TASK_ARGS) |
|
def test_train(task, model, data): |
|
run(f'yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 cache=disk') |
|
|
|
|
|
@pytest.mark.parametrize('task,model,data', TASK_ARGS) |
|
def test_val(task, model, data): |
|
run(f'yolo val {task} model={model}.pt data={data} imgsz=32') |
|
|
|
|
|
@pytest.mark.parametrize('task,model,data', TASK_ARGS) |
|
def test_predict(task, model, data): |
|
run(f"yolo predict model={model}.pt source={ROOT / 'assets'} imgsz=32 save save_crop save_txt") |
|
if ONLINE: |
|
run(f'yolo predict model={model}.pt source=https://ultralytics.com/images/bus.jpg imgsz=32') |
|
run(f'yolo predict model={model}.pt source=https://ultralytics.com/assets/decelera_landscape_min.mov imgsz=32') |
|
run(f'yolo predict model={model}.pt source=https://ultralytics.com/assets/decelera_portrait_min.mov imgsz=32') |
|
|
|
|
|
@pytest.mark.parametrize('model,format', EXPORT_ARGS) |
|
def test_export(model, format): |
|
run(f'yolo export model={model}.pt format={format}') |
|
|
|
|
|
|
|
@pytest.mark.slow |
|
@pytest.mark.parametrize('task,model,data', TASK_ARGS) |
|
def test_train_gpu(task, model, data): |
|
run(f'yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 device="0"') |
|
run(f'yolo train {task} model={model}.pt data={data} imgsz=32 epochs=1 device="0,1"') |
|
|