Simultaneous-Segmented-Depth-Prediction / monocular_depth_estimator.py
vaishanthr's picture
added distance estimation feature
661e202
raw
history blame
6.7 kB
import cv2
import torch
import numpy as np
import time
from midas.model_loader import default_models, load_model
import os
import urllib.request
MODEL_FILE_URL = {
"midas_v21_small_256" : "https://github.com/isl-org/MiDaS/releases/download/v2_1/midas_v21_small_256.pt",
"dpt_hybrid_384" : "https://github.com/isl-org/MiDaS/releases/download/v3/dpt_hybrid_384.pt",
"dpt_large_384" : "https://github.com/isl-org/MiDaS/releases/download/v3/dpt_large_384.pt",
"dpt_swin2_large_384" : "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin2_large_384.pt",
"dpt_beit_large_512" : "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_512.pt",
}
class MonocularDepthEstimator:
def __init__(self,
model_type="midas_v21_small_256",
model_weights_path="models/",
optimize=False,
side_by_side=False,
height=None,
square=False,
grayscale=False):
# model type
# MiDaS 3.1:
# For highest quality: dpt_beit_large_512
# For moderately less quality, but better speed-performance trade-off: dpt_swin2_large_384
# For embedded devices: dpt_swin2_tiny_256, dpt_levit_224
# For inference on Intel CPUs, OpenVINO may be used for the small legacy model: openvino_midas_v21_small .xml, .bin
# MiDaS 3.0:
# Legacy transformer models dpt_large_384 and dpt_hybrid_384
# MiDaS 2.1:
# Legacy convolutional models midas_v21_384 and midas_v21_small_256
# params
print("Initializing parameters and model...")
self.is_optimize = optimize
self.is_square = square
self.is_grayscale = grayscale
self.height = height
self.side_by_side = side_by_side
# select device
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Running inference on : %s" % self.device)
# loading model
if not os.path.exists(model_weights_path+model_type+".pt"):
print("Model file not found. Downloading...")
# Download the model file
urllib.request.urlretrieve(MODEL_FILE_URL[model_type], model_weights_path+model_type+".pt")
print("Model file downloaded successfully.")
self.model, self.transform, self.net_w, self.net_h = load_model(self.device, model_weights_path+model_type+".pt",
model_type, optimize, height, square)
print("Net width and height: ", (self.net_w, self.net_h))
def predict(self, image, model, target_size):
# convert img to tensor and load to gpu
img_tensor = torch.from_numpy(image).to(self.device).unsqueeze(0)
if self.is_optimize and self.device == torch.device("cuda"):
img_tensor = img_tensor.to(memory_format=torch.channels_last)
img_tensor = img_tensor.half()
prediction = model.forward(img_tensor)
prediction = (
torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=target_size[::-1],
mode="bicubic",
align_corners=False,
)
.squeeze()
.cpu()
.numpy()
)
return prediction
def process_prediction(self, depth_map):
"""
Take an RGB image and depth map and place them side by side. This includes a proper normalization of the depth map
for better visibility.
Args:
original_img: the RGB image
depth_img: the depth map
is_grayscale: use a grayscale colormap?
Returns:
the image and depth map place side by side
"""
# normalizing depth image
depth_min = depth_map.min()
depth_max = depth_map.max()
normalized_depth = 255 * (depth_map - depth_min) / (depth_max - depth_min)
# normalized_depth *= 3
# grayscale_depthmap = np.repeat(np.expand_dims(normalized_depth, 2), 3, axis=2) / 3
grayscale_depthmap = np.repeat(np.expand_dims(normalized_depth, 2), 3, axis=2)
depth_colormap = cv2.applyColorMap(np.uint8(grayscale_depthmap), cv2.COLORMAP_INFERNO)
return normalized_depth/255, depth_colormap/255
def make_prediction(self, image):
image = image.copy()
with torch.no_grad():
original_image_rgb = np.flip(image, 2) # in [0, 255] (flip required to get RGB)
# resizing the image to feed to the model
image_tranformed = self.transform({"image": original_image_rgb/255})["image"]
# monocular depth prediction
pred = self.predict(image_tranformed, self.model, target_size=original_image_rgb.shape[1::-1])
# process the model predictions
depthmap, depth_colormap = self.process_prediction(pred)
return depthmap, depth_colormap
def run(self, input_path):
# input video
cap = cv2.VideoCapture(input_path)
# Check if camera opened successfully
if not cap.isOpened():
print("Error opening video file")
with torch.no_grad():
while cap.isOpened():
# Capture frame-by-frame
inference_start_time = time.time()
ret, frame = cap.read()
if ret == True:
_, depth_colormap = self.make_prediction(frame)
inference_end_time = time.time()
fps = round(1/(inference_end_time - inference_start_time))
cv2.putText(depth_colormap, f'FPS: {fps}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (10, 255, 100), 2)
cv2.imshow('MiDaS Depth Estimation - Press Escape to close window ', depth_colormap)
# Press ESC on keyboard to exit
if cv2.waitKey(1) == 27: # Escape key
break
else:
break
# When everything done, release
# the video capture object
cap.release()
# Closes all the frames
cv2.destroyAllWindows()
if __name__ == "__main__":
# params
INPUT_PATH = "assets/videos/testvideo2.mp4"
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# set torch options
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
depth_estimator = MonocularDepthEstimator(model_type="dpt_hybrid_384")
depth_estimator.run(INPUT_PATH)