Simultaneous-Segmented-Depth-Prediction / point_cloud_generator.py
Vaishanth Ramaraj
initial commit
8166792
raw
history blame
4.17 kB
import cv2
import numpy as np
import matplotlib.pyplot as plt
import open3d as o3d
# print(pcd)
# skip = 100 # Skip every n points
# fig = plt.figure()
# ax = fig.add_subplot(111, projection='3d')
# point_range = range(0, pcd.shape[0], skip) # skip points to prevent crash
# ax.scatter(pcd[point_range, 0], # x
# pcd[point_range, 1], # y
# pcd[point_range, 2], # z
# c=pcd[point_range, 2], # height data for color
# cmap='spectral',
# marker="x")
# ax.axis('scaled') # {equal, scaled}
# plt.show()
# pcd_o3d = o3d.geometry.PointCloud() # create point cloud object
# pcd_o3d.points = o3d.utility.Vector3dVector(pcd) # set pcd_np as the point cloud points
# # Visualize:
# o3d.visualization.draw_geometries([pcd_o3d])
class PointCloudGenerator:
def __init__(self):
# Depth camera parameters:
self.fx_depth = 5.8262448167737955e+02
self.fy_depth = 5.8269103270988637e+02
self.cx_depth = 3.1304475870804731e+02
self.cy_depth = 2.3844389626620386e+02
def conver_to_point_cloud_v1(self, depth_img):
pcd = []
height, width = depth_img.shape
for i in range(height):
for j in range(width):
z = depth_img[i][j]
x = (j - self.cx_depth) * z / self.fx_depth
y = (i - self.cy_depth) * z / self.fy_depth
pcd.append([x, y, z])
return pcd
def conver_to_point_cloud_v2(self, depth_img):
# get depth resolution:
height, width = depth_img.shape
length = height * width
# compute indices:
jj = np.tile(range(width), height)
ii = np.repeat(range(height), width)
# rechape depth image
z = depth_img.reshape(length)
# compute pcd:
pcd = np.dstack([(ii - self.cx_depth) * z / self.fx_depth,
(jj - self.cy_depth) * z / self.fy_depth,
z]).reshape((length, 3))
return pcd
def generate_point_cloud(self, image_path, vectorize=False):
depth_img = cv2.imread(image_path, 0)
print(f"Image resolution: {depth_img.shape}")
print(f"Data type: {depth_img.dtype}")
print(f"Min value: {np.min(depth_img)}")
print(f"Max value: {np.max(depth_img)}")
# normalizing depth image
depth_min = depth_img.min()
depth_max = depth_img.max()
normalized_depth = 255 * ((depth_img - depth_min) / (depth_max - depth_min))
depth_img = normalized_depth
print("After normalization: ")
print(f"Image resolution: {depth_img.shape}")
print(f"Data type: {depth_img.dtype}")
print(f"Min value: {np.min(depth_img)}")
print(f"Max value: {np.max(depth_img)}")
# convert depth to point cloud
if not vectorize:
self.pcd = self.conver_to_point_cloud_v1(depth_img)
if vectorize:
self.pcd = self.conver_to_point_cloud_v2(depth_img)
return self.pcd
def viz_point_cloud(self, use_matplotlib=False):
points = np.array(self.pcd)
skip = 200
point_range = range(0, points.shape[0], skip) # skip points to prevent crash
if use_matplotlib:
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(points[point_range, 0], points[point_range, 1], points[point_range, 2], c='r', marker='o')
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()
if not use_matplotlib:
pcd_o3d = o3d.geometry.PointCloud() # create point cloud object
pcd_o3d.points = o3d.utility.Vector3dVector(pcd) # set pcd_np as the point cloud points
# Visualize:
o3d.visualization.draw_geometries([pcd_o3d])
if __name__ == "__main__":
input_image = "test/inputs/depth.png"
point_cloud_gen = PointCloudGenerator()
pcd = point_cloud_gen.generate_point_cloud(input_image)
point_cloud_gen.viz_point_cloud()