|
import cv2 |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import open3d as o3d |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PointCloudGenerator: |
|
def __init__(self): |
|
|
|
self.fx_depth = 5.8262448167737955e+02 |
|
self.fy_depth = 5.8269103270988637e+02 |
|
self.cx_depth = 3.1304475870804731e+02 |
|
self.cy_depth = 2.3844389626620386e+02 |
|
|
|
def conver_to_point_cloud_v1(self, depth_img): |
|
|
|
pcd = [] |
|
height, width = depth_img.shape |
|
for i in range(height): |
|
for j in range(width): |
|
z = depth_img[i][j] |
|
x = (j - self.cx_depth) * z / self.fx_depth |
|
y = (i - self.cy_depth) * z / self.fy_depth |
|
pcd.append([x, y, z]) |
|
|
|
return pcd |
|
|
|
def conver_to_point_cloud_v2(self, depth_img): |
|
|
|
|
|
height, width = depth_img.shape |
|
length = height * width |
|
|
|
|
|
jj = np.tile(range(width), height) |
|
ii = np.repeat(range(height), width) |
|
|
|
|
|
z = depth_img.reshape(length) |
|
|
|
pcd = np.dstack([(ii - self.cx_depth) * z / self.fx_depth, |
|
(jj - self.cy_depth) * z / self.fy_depth, |
|
z]).reshape((length, 3)) |
|
|
|
return pcd |
|
|
|
def generate_point_cloud(self, image_path, vectorize=False): |
|
depth_img = cv2.imread(image_path, 0) |
|
|
|
print(f"Image resolution: {depth_img.shape}") |
|
print(f"Data type: {depth_img.dtype}") |
|
print(f"Min value: {np.min(depth_img)}") |
|
print(f"Max value: {np.max(depth_img)}") |
|
|
|
|
|
|
|
depth_min = depth_img.min() |
|
depth_max = depth_img.max() |
|
normalized_depth = 255 * ((depth_img - depth_min) / (depth_max - depth_min)) |
|
|
|
depth_img = normalized_depth |
|
print("After normalization: ") |
|
print(f"Image resolution: {depth_img.shape}") |
|
print(f"Data type: {depth_img.dtype}") |
|
print(f"Min value: {np.min(depth_img)}") |
|
print(f"Max value: {np.max(depth_img)}") |
|
|
|
|
|
|
|
if not vectorize: |
|
self.pcd = self.conver_to_point_cloud_v1(depth_img) |
|
if vectorize: |
|
self.pcd = self.conver_to_point_cloud_v2(depth_img) |
|
|
|
|
|
return self.pcd |
|
|
|
def viz_point_cloud(self, use_matplotlib=False): |
|
|
|
points = np.array(self.pcd) |
|
skip = 200 |
|
point_range = range(0, points.shape[0], skip) |
|
|
|
if use_matplotlib: |
|
fig = plt.figure() |
|
ax = fig.add_subplot(111, projection='3d') |
|
ax.scatter(points[point_range, 0], points[point_range, 1], points[point_range, 2], c='r', marker='o') |
|
ax.set_xlabel('X Label') |
|
ax.set_ylabel('Y Label') |
|
ax.set_zlabel('Z Label') |
|
plt.show() |
|
|
|
if not use_matplotlib: |
|
|
|
pcd_o3d = o3d.geometry.PointCloud() |
|
pcd_o3d.points = o3d.utility.Vector3dVector(pcd) |
|
|
|
o3d.visualization.draw_geometries([pcd_o3d]) |
|
|
|
|
|
if __name__ == "__main__": |
|
input_image = "test/inputs/depth.png" |
|
point_cloud_gen = PointCloudGenerator() |
|
pcd = point_cloud_gen.generate_point_cloud(input_image) |
|
point_cloud_gen.viz_point_cloud() |
|
|
|
|
|
|
|
|