File size: 23,885 Bytes
8166792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
<div align="center">
  <p>
    <a href="https://ultralytics.com/yolov8" target="_blank">
      <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
  </p>

[English](README.md) | [简体中文](README.zh-CN.md)
<br>

<div>
    <a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
    <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv8 Citation"></a>
    <a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a>
    <br>
    <a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a>
    <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
    <a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
  </div>
  <br>

[Ultralytics](https://ultralytics.com) [YOLOv8](https://github.com/ultralytics/ultralytics) 是一款前沿、最先进(SOTA)的模型,基于先前 YOLO 版本的成功,引入了新功能和改进,进一步提升性能和灵活性。YOLOv8 设计快速、准确且易于使用,使其成为各种物体检测与跟踪、实例分割、图像分类和姿态估计任务的绝佳选择。

我们希望这里的资源能帮助您充分利用 YOLOv8。请浏览 YOLOv8 <a href="https://docs.ultralytics.com/">文档</a> 了解详细信息,在 <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> 上提交问题以获得支持,并加入我们的 <a href="https://discord.gg/2wNGbc6g9X">Discord</a> 社区进行问题和讨论!

如需申请企业许可,请在 [Ultralytics Licensing](https://ultralytics.com/license) 处填写表格

<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>

<div align="center">
  <a href="https://github.com/ultralytics" style="text-decoration:none;">
    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="" /></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
  <a href="https://www.linkedin.com/company/ultralytics/" style="text-decoration:none;">
    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="" /></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
  <a href="https://twitter.com/ultralytics" style="text-decoration:none;">
    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="" /></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
  <a href="https://youtube.com/ultralytics" style="text-decoration:none;">
    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="" /></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
  <a href="https://www.tiktok.com/@ultralytics" style="text-decoration:none;">
    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="" /></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
  <a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="" /></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
  <a href="https://discord.gg/2wNGbc6g9X" style="text-decoration:none;">
    <img src="https://github.com/ultralytics/assets/blob/main/social/logo-social-discord.png" width="2%" alt="" /></a>
</div>
</div>

## <div align="center">文档</div>

请参阅下面的快速安装和使用示例,以及 [YOLOv8 文档](https://docs.ultralytics.com) 上有关培训、验证、预测和部署的完整文档。

<details open>
<summary>安装</summary>

使用Pip在一个[**Python>=3.8**](https://www.python.org/)环境中安装`ultralytics`包,此环境还需包含[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/)。这也会安装所有必要的[依赖项](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt)。

[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)

```bash
pip install ultralytics
```

如需使用包括Conda、Docker和Git在内的其他安装方法,请参考[快速入门指南](https://docs.ultralytics.com/quickstart)。

</details>

<details open>
<summary>Usage</summary>

#### CLI

YOLOv8 可以在命令行界面(CLI)中直接使用,只需输入 `yolo` 命令:

```bash
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
```

`yolo` 可用于各种任务和模式,并接受其他参数,例如 `imgsz=640`。查看 YOLOv8 [CLI 文档](https://docs.ultralytics.com/usage/cli)以获取示例。

#### Python

YOLOv8 也可以在 Python 环境中直接使用,并接受与上述 CLI 示例中相同的[参数](https://docs.ultralytics.com/usage/cfg/):

```python
from ultralytics import YOLO

# 加载模型
model = YOLO("yolov8n.yaml")  # 从头开始构建新模型
model = YOLO("yolov8n.pt")  # 加载预训练模型(建议用于训练)

# 使用模型
model.train(data="coco128.yaml", epochs=3)  # 训练模型
metrics = model.val()  # 在验证集上评估模型性能
results = model("https://ultralytics.com/images/bus.jpg")  # 对图像进行预测
success = model.export(format="onnx")  # 将模型导出为 ONNX 格式
```

[模型](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) 会自动从最新的 Ultralytics [发布版本](https://github.com/ultralytics/assets/releases)中下载。查看 YOLOv8 [Python 文档](https://docs.ultralytics.com/usage/python)以获取更多示例。

</details>

## <div align="center">模型</div>

在[COCO](https://docs.ultralytics.com/datasets/detect/coco)数据集上预训练的YOLOv8 [检测](https://docs.ultralytics.com/tasks/detect),[分割](https://docs.ultralytics.com/tasks/segment)和[姿态](https://docs.ultralytics.com/tasks/pose)模型可以在这里找到,以及在[ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet)数据集上预训练的YOLOv8 [分类](https://docs.ultralytics.com/tasks/classify)模型。所有的检测,分割和姿态模型都支持[追踪](https://docs.ultralytics.com/modes/track)模式。

<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png">

所有[模型](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models)在首次使用时会自动从最新的Ultralytics [发布版本](https://github.com/ultralytics/assets/releases)下载。

<details open><summary>检测</summary>

查看 [检测文档](https://docs.ultralytics.com/tasks/detect/) 以获取使用这些模型的示例。

| 模型                                                                                   | 尺寸<br><sup>(像素) | mAP<sup>val<br>50-95 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
| ------------------------------------------------------------------------------------ | --------------- | -------------------- | --------------------------- | -------------------------------- | -------------- | ----------------- |
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640             | 37.3                 | 80.4                        | 0.99                             | 3.2            | 8.7               |
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640             | 44.9                 | 128.4                       | 1.20                             | 11.2           | 28.6              |
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640             | 50.2                 | 234.7                       | 1.83                             | 25.9           | 78.9              |
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640             | 52.9                 | 375.2                       | 2.39                             | 43.7           | 165.2             |
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640             | 53.9                 | 479.1                       | 3.53                             | 68.2           | 257.8             |

- **mAP<sup>val</sup>** 值是基于单模型单尺度在 [COCO val2017](http://cocodataset.org) 数据集上的结果。
  <br>通过 `yolo val detect data=coco.yaml device=0` 复现
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 COCO val 图像进行平均计算的。
  <br>通过 `yolo val detect data=coco128.yaml batch=1 device=0|cpu` 复现

</details>

<details><summary>分割</summary>

查看 [分割文档](https://docs.ultralytics.com/tasks/segment/) 以获取使用这些模型的示例。

| 模型                                                                                           | 尺寸<br><sup>(像素) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
| -------------------------------------------------------------------------------------------- | --------------- | -------------------- | --------------------- | --------------------------- | -------------------------------- | -------------- | ----------------- |
| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640             | 36.7                 | 30.5                  | 96.1                        | 1.21                             | 3.4            | 12.6              |
| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640             | 44.6                 | 36.8                  | 155.7                       | 1.47                             | 11.8           | 42.6              |
| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640             | 49.9                 | 40.8                  | 317.0                       | 2.18                             | 27.3           | 110.2             |
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640             | 52.3                 | 42.6                  | 572.4                       | 2.79                             | 46.0           | 220.5             |
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640             | 53.4                 | 43.4                  | 712.1                       | 4.02                             | 71.8           | 344.1             |

- **mAP<sup>val</sup>** 值是基于单模型单尺度在 [COCO val2017](http://cocodataset.org) 数据集上的结果。
  <br>通过 `yolo val segment data=coco.yaml device=0` 复现
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 COCO val 图像进行平均计算的。
  <br>通过 `yolo val segment data=coco128-seg.yaml batch=1 device=0|cpu` 复现

</details>

<details><summary>分类</summary>

查看 [分类文档](https://docs.ultralytics.com/tasks/classify/) 以获取使用这些模型的示例。

| 模型                                                                                           | 尺寸<br><sup>(像素) | acc<br><sup>top1 | acc<br><sup>top5 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
| -------------------------------------------------------------------------------------------- | --------------- | ---------------- | ---------------- | --------------------------- | -------------------------------- | -------------- | ------------------------ |
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224             | 66.6             | 87.0             | 12.9                        | 0.31                             | 2.7            | 4.3                      |
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224             | 72.3             | 91.1             | 23.4                        | 0.35                             | 6.4            | 13.5                     |
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224             | 76.4             | 93.2             | 85.4                        | 0.62                             | 17.0           | 42.7                     |
| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224             | 78.0             | 94.1             | 163.0                       | 0.87                             | 37.5           | 99.7                     |
| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224             | 78.4             | 94.3             | 232.0                       | 1.01                             | 57.4           | 154.8                    |

- **acc** 值是模型在 [ImageNet](https://www.image-net.org/) 数据集验证集上的准确率。
  <br>通过 `yolo val classify data=path/to/ImageNet device=0` 复现
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 ImageNet val 图像进行平均计算的。
  <br>通过 `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu` 复现

</details>

<details><summary>姿态</summary>

查看 [姿态文档](https://docs.ultralytics.com/tasks/) 以获取使用这些模型的示例。

| 模型                                                                                                   | 尺寸<br><sup>(像素) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
| ---------------------------------------------------------------------------------------------------- | --------------- | --------------------- | ------------------ | --------------------------- | -------------------------------- | -------------- | ----------------- |
| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt)       | 640             | 50.4                  | 80.1               | 131.8                       | 1.18                             | 3.3            | 9.2               |
| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt)       | 640             | 60.0                  | 86.2               | 233.2                       | 1.42                             | 11.6           | 30.2              |
| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt)       | 640             | 65.0                  | 88.8               | 456.3                       | 2.00                             | 26.4           | 81.0              |
| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-pose.pt)       | 640             | 67.6                  | 90.0               | 784.5                       | 2.59                             | 44.4           | 168.6             |
| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt)       | 640             | 69.2                  | 90.2               | 1607.1                      | 3.73                             | 69.4           | 263.2             |
| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280            | 71.6                  | 91.2               | 4088.7                      | 10.04                            | 99.1           | 1066.4            |

- **mAP<sup>val</sup>** 值是基于单模型单尺度在 [COCO Keypoints val2017](http://cocodataset.org) 数据集上的结果。
  <br>通过 `yolo val pose data=coco-pose.yaml device=0` 复现
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 COCO val 图像进行平均计算的。
  <br>通过 `yolo val pose data=coco8-pose.yaml batch=1 device=0|cpu` 复现

</details>

## <div align="center">集成</div>

<br>
<a href="https://bit.ly/ultralytics_hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png"></a>
<br>
<br>

<div align="center">
  <a href="https://roboflow.com/?ref=ultralytics">
    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-roboflow.png" width="10%" /></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
  <a href="https://cutt.ly/yolov5-readme-clearml">
    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-clearml.png" width="10%" /></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
  <a href="https://bit.ly/yolov8-readme-comet">
    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" /></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
  <a href="https://bit.ly/yolov5-neuralmagic">
    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" /></a>
</div>

|                                      Roboflow                                      |                                 ClearML ⭐ NEW                                  |                                     Comet ⭐ NEW                                      |                                  Neural Magic ⭐ NEW                                   |
| :--------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :----------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------: |
| 使用 [Roboflow](https://roboflow.com/?ref=ultralytics) 将您的自定义数据集直接标记并导出至 YOLOv8 进行训练 | 使用 [ClearML](https://cutt.ly/yolov5-readme-clearml)(开源!)自动跟踪、可视化,甚至远程训练 YOLOv8 | 免费且永久,[Comet](https://bit.ly/yolov8-readme-comet) 让您保存 YOLOv8 模型、恢复训练,并以交互式方式查看和调试预测 | 使用 [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) 使 YOLOv8 推理速度提高多达 6 倍 |

## <div align="center">Ultralytics HUB</div>

体验 [Ultralytics HUB](https://bit.ly/ultralytics_hub) ⭐ 带来的无缝 AI,这是一个一体化解决方案,用于数据可视化、YOLOv5 和即将推出的 YOLOv8 🚀 模型训练和部署,无需任何编码。通过我们先进的平台和用户友好的 [Ultralytics 应用程序](https://ultralytics.com/app_install),轻松将图像转化为可操作的见解,并实现您的 AI 愿景。现在就开始您的**免费**之旅!

<a href="https://bit.ly/ultralytics_hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>

## <div align="center">贡献</div>

我们喜欢您的参与!没有社区的帮助,YOLOv5 和 YOLOv8 将无法实现。请参阅我们的[贡献指南](https://docs.ultralytics.com/help/contributing)以开始使用,并填写我们的[调查问卷](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey)向我们提供您的使用体验反馈。感谢所有贡献者的支持!🙏

<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->

<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png"></a>

## <div align="center">许可证</div>

YOLOv8 提供两种不同的许可证:

- **AGPL-3.0 许可证**:详细信息请参阅 [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) 文件。
- **企业许可证**:为商业产品开发提供更大的灵活性,无需遵循 AGPL-3.0 的开源要求。典型的用例是将 Ultralytics 软件和 AI 模型嵌入商业产品和应用中。在 [Ultralytics 授权](https://ultralytics.com/license) 处申请企业许可证。

## <div align="center">联系方式</div>

对于 YOLOv8 的错误报告和功能请求,请访问 [GitHub Issues](https://github.com/ultralytics/ultralytics/issues),并加入我们的 [Discord](https://discord.gg/2wNGbc6g9X) 社区进行问题和讨论!

<br>
<div align="center">
  <a href="https://github.com/ultralytics" style="text-decoration:none;">
    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="" /></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
  <a href="https://www.linkedin.com/company/ultralytics/" style="text-decoration:none;">
    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="" /></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
  <a href="https://twitter.com/ultralytics" style="text-decoration:none;">
    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="" /></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
  <a href="https://youtube.com/ultralytics" style="text-decoration:none;">
    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="" /></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
  <a href="https://www.tiktok.com/@ultralytics" style="text-decoration:none;">
    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="" /></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
  <a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="3%" alt="" /></a>
  <a href="https://discord.gg/2wNGbc6g9X" style="text-decoration:none;">
    <img src="https://github.com/ultralytics/assets/blob/main/social/logo-social-discord.png" width="3%" alt="" /></a>
</div>