File size: 8,552 Bytes
8166792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import cv2
import torch

from midas.dpt_depth import DPTDepthModel
from midas.midas_net import MidasNet
from midas.midas_net_custom import MidasNet_small
from midas.transforms import Resize, NormalizeImage, PrepareForNet

from torchvision.transforms import Compose

default_models = {
    "dpt_beit_large_512": "weights/dpt_beit_large_512.pt",
    "dpt_beit_large_384": "weights/dpt_beit_large_384.pt",
    "dpt_beit_base_384": "weights/dpt_beit_base_384.pt",
    "dpt_swin2_large_384": "weights/dpt_swin2_large_384.pt",
    "dpt_swin2_base_384": "weights/dpt_swin2_base_384.pt",
    "dpt_swin2_tiny_256": "weights/dpt_swin2_tiny_256.pt",
    "dpt_swin_large_384": "weights/dpt_swin_large_384.pt",
    "dpt_next_vit_large_384": "weights/dpt_next_vit_large_384.pt",
    "dpt_levit_224": "weights/dpt_levit_224.pt",
    "dpt_large_384": "weights/dpt_large_384.pt",
    "dpt_hybrid_384": "weights/dpt_hybrid_384.pt",
    "midas_v21_384": "weights/midas_v21_384.pt",
    "midas_v21_small_256": "weights/midas_v21_small_256.pt",
    "openvino_midas_v21_small_256": "weights/openvino_midas_v21_small_256.xml",
}


def load_model(device, model_path, model_type="dpt_large_384", optimize=True, height=None, square=False):
    """Load the specified network.

    Args:
        device (device): the torch device used
        model_path (str): path to saved model
        model_type (str): the type of the model to be loaded
        optimize (bool): optimize the model to half-integer on CUDA?
        height (int): inference encoder image height
        square (bool): resize to a square resolution?

    Returns:
        The loaded network, the transform which prepares images as input to the network and the dimensions of the
        network input
    """
    if "openvino" in model_type:
        from openvino.runtime import Core

    keep_aspect_ratio = not square

    if model_type == "dpt_beit_large_512":
        model = DPTDepthModel(
            path=model_path,
            backbone="beitl16_512",
            non_negative=True,
        )
        net_w, net_h = 512, 512
        resize_mode = "minimal"
        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

    elif model_type == "dpt_beit_large_384":
        model = DPTDepthModel(
            path=model_path,
            backbone="beitl16_384",
            non_negative=True,
        )
        net_w, net_h = 384, 384
        resize_mode = "minimal"
        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

    elif model_type == "dpt_beit_base_384":
        model = DPTDepthModel(
            path=model_path,
            backbone="beitb16_384",
            non_negative=True,
        )
        net_w, net_h = 384, 384
        resize_mode = "minimal"
        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

    elif model_type == "dpt_swin2_large_384":
        model = DPTDepthModel(
            path=model_path,
            backbone="swin2l24_384",
            non_negative=True,
        )
        net_w, net_h = 384, 384
        keep_aspect_ratio = False
        resize_mode = "minimal"
        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

    elif model_type == "dpt_swin2_base_384":
        model = DPTDepthModel(
            path=model_path,
            backbone="swin2b24_384",
            non_negative=True,
        )
        net_w, net_h = 384, 384
        keep_aspect_ratio = False
        resize_mode = "minimal"
        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

    elif model_type == "dpt_swin2_tiny_256":
        model = DPTDepthModel(
            path=model_path,
            backbone="swin2t16_256",
            non_negative=True,
        )
        net_w, net_h = 256, 256
        keep_aspect_ratio = False
        resize_mode = "minimal"
        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

    elif model_type == "dpt_swin_large_384":
        model = DPTDepthModel(
            path=model_path,
            backbone="swinl12_384",
            non_negative=True,
        )
        net_w, net_h = 384, 384
        keep_aspect_ratio = False
        resize_mode = "minimal"
        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

    elif model_type == "dpt_next_vit_large_384":
        model = DPTDepthModel(
            path=model_path,
            backbone="next_vit_large_6m",
            non_negative=True,
        )
        net_w, net_h = 384, 384
        resize_mode = "minimal"
        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

    # We change the notation from dpt_levit_224 (MiDaS notation) to levit_384 (timm notation) here, where the 224 refers
    # to the resolution 224x224 used by LeViT and 384 is the first entry of the embed_dim, see _cfg and model_cfgs of
    # https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/levit.py
    # (commit id: 927f031293a30afb940fff0bee34b85d9c059b0e)
    elif model_type == "dpt_levit_224":
        model = DPTDepthModel(
            path=model_path,
            backbone="levit_384",
            non_negative=True,
            head_features_1=64,
            head_features_2=8,
        )
        net_w, net_h = 224, 224
        keep_aspect_ratio = False
        resize_mode = "minimal"
        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

    elif model_type == "dpt_large_384":
        model = DPTDepthModel(
            path=model_path,
            backbone="vitl16_384",
            non_negative=True,
        )
        net_w, net_h = 384, 384
        resize_mode = "minimal"
        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

    elif model_type == "dpt_hybrid_384":
        model = DPTDepthModel(
            path=model_path,
            backbone="vitb_rn50_384",
            non_negative=True,
        )
        net_w, net_h = 384, 384
        resize_mode = "minimal"
        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

    elif model_type == "midas_v21_384":
        model = MidasNet(model_path, non_negative=True)
        net_w, net_h = 384, 384
        resize_mode = "upper_bound"
        normalization = NormalizeImage(
            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
        )

    elif model_type == "midas_v21_small_256":
        model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
                               non_negative=True, blocks={'expand': True})
        net_w, net_h = 256, 256
        resize_mode = "upper_bound"
        normalization = NormalizeImage(
            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
        )

    elif model_type == "openvino_midas_v21_small_256":
        ie = Core()
        uncompiled_model = ie.read_model(model=model_path)
        model = ie.compile_model(uncompiled_model, "CPU")
        net_w, net_h = 256, 256
        resize_mode = "upper_bound"
        normalization = NormalizeImage(
            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
        )

    else:
        print(f"model_type '{model_type}' not implemented, use: --model_type large")
        assert False

    if not "openvino" in model_type:
        print("Model loaded, number of parameters = {:.0f}M".format(sum(p.numel() for p in model.parameters()) / 1e6))
    else:
        print("Model loaded, optimized with OpenVINO")

    if "openvino" in model_type:
        keep_aspect_ratio = False

    if height is not None:
        net_w, net_h = height, height

    transform = Compose(
        [
            Resize(
                net_w,
                net_h,
                resize_target=None,
                keep_aspect_ratio=keep_aspect_ratio,
                ensure_multiple_of=32,
                resize_method=resize_mode,
                image_interpolation_method=cv2.INTER_CUBIC,
            ),
            normalization,
            PrepareForNet(),
        ]
    )

    if not "openvino" in model_type:
        model.eval()

    if optimize and (device == torch.device("cuda")):
        if not "openvino" in model_type:
            model = model.to(memory_format=torch.channels_last)
            model = model.half()
        else:
            print("Error: OpenVINO models are already optimized. No optimization to half-float possible.")
            exit()

    if not "openvino" in model_type:
        model.to(device)

    return model, transform, net_w, net_h