File size: 8,552 Bytes
8166792 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import cv2
import torch
from midas.dpt_depth import DPTDepthModel
from midas.midas_net import MidasNet
from midas.midas_net_custom import MidasNet_small
from midas.transforms import Resize, NormalizeImage, PrepareForNet
from torchvision.transforms import Compose
default_models = {
"dpt_beit_large_512": "weights/dpt_beit_large_512.pt",
"dpt_beit_large_384": "weights/dpt_beit_large_384.pt",
"dpt_beit_base_384": "weights/dpt_beit_base_384.pt",
"dpt_swin2_large_384": "weights/dpt_swin2_large_384.pt",
"dpt_swin2_base_384": "weights/dpt_swin2_base_384.pt",
"dpt_swin2_tiny_256": "weights/dpt_swin2_tiny_256.pt",
"dpt_swin_large_384": "weights/dpt_swin_large_384.pt",
"dpt_next_vit_large_384": "weights/dpt_next_vit_large_384.pt",
"dpt_levit_224": "weights/dpt_levit_224.pt",
"dpt_large_384": "weights/dpt_large_384.pt",
"dpt_hybrid_384": "weights/dpt_hybrid_384.pt",
"midas_v21_384": "weights/midas_v21_384.pt",
"midas_v21_small_256": "weights/midas_v21_small_256.pt",
"openvino_midas_v21_small_256": "weights/openvino_midas_v21_small_256.xml",
}
def load_model(device, model_path, model_type="dpt_large_384", optimize=True, height=None, square=False):
"""Load the specified network.
Args:
device (device): the torch device used
model_path (str): path to saved model
model_type (str): the type of the model to be loaded
optimize (bool): optimize the model to half-integer on CUDA?
height (int): inference encoder image height
square (bool): resize to a square resolution?
Returns:
The loaded network, the transform which prepares images as input to the network and the dimensions of the
network input
"""
if "openvino" in model_type:
from openvino.runtime import Core
keep_aspect_ratio = not square
if model_type == "dpt_beit_large_512":
model = DPTDepthModel(
path=model_path,
backbone="beitl16_512",
non_negative=True,
)
net_w, net_h = 512, 512
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_beit_large_384":
model = DPTDepthModel(
path=model_path,
backbone="beitl16_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_beit_base_384":
model = DPTDepthModel(
path=model_path,
backbone="beitb16_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_swin2_large_384":
model = DPTDepthModel(
path=model_path,
backbone="swin2l24_384",
non_negative=True,
)
net_w, net_h = 384, 384
keep_aspect_ratio = False
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_swin2_base_384":
model = DPTDepthModel(
path=model_path,
backbone="swin2b24_384",
non_negative=True,
)
net_w, net_h = 384, 384
keep_aspect_ratio = False
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_swin2_tiny_256":
model = DPTDepthModel(
path=model_path,
backbone="swin2t16_256",
non_negative=True,
)
net_w, net_h = 256, 256
keep_aspect_ratio = False
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_swin_large_384":
model = DPTDepthModel(
path=model_path,
backbone="swinl12_384",
non_negative=True,
)
net_w, net_h = 384, 384
keep_aspect_ratio = False
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_next_vit_large_384":
model = DPTDepthModel(
path=model_path,
backbone="next_vit_large_6m",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
# We change the notation from dpt_levit_224 (MiDaS notation) to levit_384 (timm notation) here, where the 224 refers
# to the resolution 224x224 used by LeViT and 384 is the first entry of the embed_dim, see _cfg and model_cfgs of
# https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/levit.py
# (commit id: 927f031293a30afb940fff0bee34b85d9c059b0e)
elif model_type == "dpt_levit_224":
model = DPTDepthModel(
path=model_path,
backbone="levit_384",
non_negative=True,
head_features_1=64,
head_features_2=8,
)
net_w, net_h = 224, 224
keep_aspect_ratio = False
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_large_384":
model = DPTDepthModel(
path=model_path,
backbone="vitl16_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_hybrid_384":
model = DPTDepthModel(
path=model_path,
backbone="vitb_rn50_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "midas_v21_384":
model = MidasNet(model_path, non_negative=True)
net_w, net_h = 384, 384
resize_mode = "upper_bound"
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
elif model_type == "midas_v21_small_256":
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
non_negative=True, blocks={'expand': True})
net_w, net_h = 256, 256
resize_mode = "upper_bound"
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
elif model_type == "openvino_midas_v21_small_256":
ie = Core()
uncompiled_model = ie.read_model(model=model_path)
model = ie.compile_model(uncompiled_model, "CPU")
net_w, net_h = 256, 256
resize_mode = "upper_bound"
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
else:
print(f"model_type '{model_type}' not implemented, use: --model_type large")
assert False
if not "openvino" in model_type:
print("Model loaded, number of parameters = {:.0f}M".format(sum(p.numel() for p in model.parameters()) / 1e6))
else:
print("Model loaded, optimized with OpenVINO")
if "openvino" in model_type:
keep_aspect_ratio = False
if height is not None:
net_w, net_h = height, height
transform = Compose(
[
Resize(
net_w,
net_h,
resize_target=None,
keep_aspect_ratio=keep_aspect_ratio,
ensure_multiple_of=32,
resize_method=resize_mode,
image_interpolation_method=cv2.INTER_CUBIC,
),
normalization,
PrepareForNet(),
]
)
if not "openvino" in model_type:
model.eval()
if optimize and (device == torch.device("cuda")):
if not "openvino" in model_type:
model = model.to(memory_format=torch.channels_last)
model = model.half()
else:
print("Error: OpenVINO models are already optimized. No optimization to half-float possible.")
exit()
if not "openvino" in model_type:
model.to(device)
return model, transform, net_w, net_h
|