File size: 4,109 Bytes
8166792 661e202 8166792 661e202 8166792 661e202 8166792 661e202 8166792 661e202 8166792 661e202 8166792 661e202 8166792 661e202 8166792 661e202 8166792 661e202 8166792 661e202 8166792 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import cv2
import numpy as np
from ultralytics import YOLO
import random
import torch
class ImageSegmenter:
def __init__(self, model_type="yolov8s-seg") -> None:
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model = YOLO('models/'+ model_type +'.pt')
self.model.to(self.device)
self.is_show_bounding_boxes = True
self.is_show_segmentation_boundary = False
self.is_show_segmentation = False
self.confidence_threshold = 0.5
self.cls_clr = {}
# params
self.bb_thickness = 2
self.bb_clr = (255, 0, 0)
# variables
self.masks = {}
def get_cls_clr(self, cls_id):
if cls_id in self.cls_clr:
return self.cls_clr[cls_id]
# gen rand color
r = random.randint(50, 200)
g = random.randint(50, 200)
b = random.randint(50, 200)
self.cls_clr[cls_id] = (r, g, b)
return (r, g, b)
def predict(self, image):
# params
objects_data = []
image = image.copy()
predictions = self.model.predict(image)
cls_ids = predictions[0].boxes.cls.cpu().numpy()
bounding_boxes = predictions[0].boxes.xyxy.int().cpu().numpy()
cls_conf = predictions[0].boxes.conf.cpu().numpy()
# segmentation
if predictions[0].masks:
seg_mask_boundary = predictions[0].masks.xy
seg_mask = predictions[0].masks.data.cpu().numpy()
else:
seg_mask_boundary, seg_mask = [], np.array([])
for id, cls in enumerate(cls_ids):
cls_clr = self.get_cls_clr(cls)
# draw filled segmentation region
if seg_mask.any() and cls_conf[id] > self.confidence_threshold:
self.masks[id] = seg_mask[id]
if self.is_show_segmentation:
alpha = 0.8
# converting the mask from 1 channel to 3 channels
colored_mask = np.expand_dims(seg_mask[id], 0).repeat(3, axis=0)
colored_mask = np.moveaxis(colored_mask, 0, -1)
# Resize the mask to match the image size, if necessary
if image.shape[:2] != seg_mask[id].shape[:2]:
colored_mask = cv2.resize(colored_mask, (image.shape[1], image.shape[0]))
# filling the mased area with class color
masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=cls_clr)
image_overlay = masked.filled()
image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)
# draw bounding box with class name and score
if self.is_show_bounding_boxes and cls_conf[id] > self.confidence_threshold:
(x1, y1, x2, y2) = bounding_boxes[id]
cls_name = self.model.names[cls]
cls_confidence = cls_conf[id]
disp_str = cls_name +' '+ str(round(cls_confidence, 2))
cv2.rectangle(image, (x1, y1), (x2, y2), cls_clr, self.bb_thickness)
cv2.rectangle(image, (x1, y1), (x1+(len(disp_str)*9), y1+15), cls_clr, -1)
cv2.putText(image, disp_str, (x1+5, y1+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
# draw segmentation boundary
if len(seg_mask_boundary) and self.is_show_segmentation_boundary and cls_conf[id] > self.confidence_threshold:
cv2.polylines(image, [np.array(seg_mask_boundary[id], dtype=np.int32)], isClosed=True, color=cls_clr, thickness=2)
# object variables
(x1, y1, x2, y2) = bounding_boxes[id]
center = x1+(x2-x1)//2, y1+(y2-y1)//2
objects_data.append([cls, self.model.names[cls], center, self.masks[id], cls_clr])
return image, objects_data
|