File size: 8,182 Bytes
8166792
 
 
 
 
 
661e202
8166792
 
 
661e202
8166792
 
 
 
661e202
 
8166792
 
661e202
 
 
 
 
 
 
 
 
 
 
8166792
 
 
 
 
 
 
661e202
 
 
 
 
8166792
 
 
 
 
 
 
 
 
 
 
661e202
 
 
 
 
 
 
 
 
 
 
 
 
 
8166792
 
 
 
661e202
 
8166792
661e202
 
 
 
 
 
 
 
 
 
 
 
8166792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
661e202
 
 
 
 
 
8166792
 
 
 
 
 
 
 
661e202
 
 
 
8166792
 
 
 
 
 
 
 
 
 
 
 
 
 
661e202
 
 
 
 
 
 
8166792
 
 
 
 
 
 
 
 
 
661e202
 
 
 
8166792
 
 
 
 
 
 
 
 
 
661e202
8166792
 
661e202
8166792
 
661e202
8166792
 
 
661e202
8166792
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from ultralytics import YOLO
import cv2
import gradio as gr
import numpy as np
import os
import torch
import utils

from image_segmenter import ImageSegmenter
from monocular_depth_estimator import MonocularDepthEstimator
from point_cloud_generator import display_pcd

# params
CANCEL_PROCESSING = False

img_seg = ImageSegmenter(model_type="yolov8s-seg")
depth_estimator = MonocularDepthEstimator(model_type="midas_v21_small_256")

def process_image(image):
    image = utils.resize(image)
    image_segmentation, objects_data = img_seg.predict(image)
    depthmap, depth_colormap = depth_estimator.make_prediction(image)
    dist_image = utils.draw_depth_info(image, depthmap, objects_data)
    return image_segmentation, depth_colormap, dist_image

def test_process_img(image):
    image = utils.resize(image)
    image_segmentation, objects_data = img_seg.predict(image)
    depthmap, depth_colormap = depth_estimator.make_prediction(image)
    return image_segmentation, objects_data, depthmap, depth_colormap

def process_video(vid_path=None):
    vid_cap = cv2.VideoCapture(vid_path)
    while vid_cap.isOpened():
        ret, frame = vid_cap.read()
        if ret:
            print("making predictions ....")
            frame = utils.resize(frame)
            image_segmentation, objects_data = img_seg.predict(frame)
            depthmap, depth_colormap = depth_estimator.make_prediction(frame)
            dist_image = utils.draw_depth_info(frame, depthmap, objects_data)
            yield cv2.cvtColor(image_segmentation, cv2.COLOR_BGR2RGB), depth_colormap, dist_image
    
    return None

def update_segmentation_options(options):
    img_seg.is_show_bounding_boxes = True if 'Show Boundary Box' in options else False
    img_seg.is_show_segmentation = True if 'Show Segmentation Region' in options else False
    img_seg.is_show_segmentation_boundary = True if 'Show Segmentation Boundary' in options else False

def update_confidence_threshold(thres_val):
    img_seg.confidence_threshold = thres_val/100

def model_selector(model_type):

    if "Small - Better performance and less accuracy" == model_type:
        midas_model, yolo_model = "midas_v21_small_256", "yolov8s-seg"
    elif "Medium - Balanced performance and accuracy" == model_type:
        midas_model, yolo_model = "dpt_hybrid_384", "yolov8m-seg"
    elif "Large - Slow performance and high accuracy" == model_type:
        midas_model, yolo_model = "dpt_large_384", "yolov8l-seg"
    else:
        midas_model, yolo_model = "midas_v21_small_256", "yolov8s-seg"

    img_seg = ImageSegmenter(model_type=yolo_model)
    depth_estimator = MonocularDepthEstimator(model_type=midas_model)

def cancel():
    CANCEL_PROCESSING = True

if __name__ == "__main__":

    # testing
    # img_1 = cv2.imread("assets/images/bus.jpg")
    # img_1 = utils.resize(img_1)

    # image_segmentation, objects_data, depthmap, depth_colormap = test_process_img(img_1)
    # final_image = utils.draw_depth_info(image_segmentation, depthmap, objects_data)
    # objs_pcd = utils.generate_obj_pcd(depthmap, objects_data[2][3])
    # # print(objs_pcd[0][0])
    # # display_pcd(objs_pcd, use_matplotlib=False)

    # cv2.imshow("Segmentation", image_segmentation)
    # cv2.imshow("Depth", depthmap*objects_data[2][3])
    # cv2.imshow("Final", final_image)

    # cv2.waitKey(0)
    # cv2.destroyAllWindows()

    # gradio gui app
    with gr.Blocks() as my_app:

        # title
        gr.Markdown(
        """
        # Object segmentation and depth estimation
        Input an image or Video
        """)

        # tabs
        with gr.Tab("Image"):
            with gr.Row():
                with gr.Column(scale=1):
                    img_input = gr.Image()
                    model_type_img = gr.Dropdown(
                        ["Small - Better performance and less accuracy", 
                         "Medium - Balanced performance and accuracy", 
                         "Large - Slow performance and high accuracy"], 
                        label="Model Type", value="Small - Better performance and less accuracy",
                        info="Select the inference model before running predictions!")
                    options_checkbox_img = gr.CheckboxGroup(["Show Boundary Box", "Show Segmentation Region", "Show Segmentation Boundary"], label="Options")
                    conf_thres_img = gr.Slider(1, 100, value=60, label="Confidence Threshold", info="Choose the threshold above which objects should be detected")
                    submit_btn_img = gr.Button(value="Predict")                    

                with gr.Column(scale=2):
                    with gr.Row():
                        segmentation_img_output = gr.Image(height=300, label="Segmentation")
                        depth_img_output = gr.Image(height=300, label="Depth Estimation")
                    
                    with gr.Row():
                        dist_img_output = gr.Image(height=300, label="Distance")
                        pcd_img_output = gr.Image(height=300, label="Point Cloud")
            
            gr.Markdown("## Sample Images")
            gr.Examples(
                examples=[os.path.join(os.path.dirname(__file__), "assets/images/bus.jpg")],
                inputs=img_input,
                outputs=[segmentation_img_output, depth_img_output],
                fn=process_image,
                cache_examples=True,
            )

        with gr.Tab("Video"):
            with gr.Row():
                with gr.Column(scale=1):
                    vid_input = gr.Video()
                    model_type_vid = gr.Dropdown(
                        ["Small - Better performance and less accuracy", 
                         "Medium - Balanced performance and accuracy", 
                         "Large - Slow performance and high accuracy"], 
                        label="Model Type", value="Small - Better performance and less accuracy",
                        info="Select the inference model before running predictions!"),
                    
                    options_checkbox_vid = gr.CheckboxGroup(["Show Boundary Box", "Show Segmentation Region", "Show Segmentation Boundary"], label="Options")
                    conf_thres_vid = gr.Slider(1, 100, value=60, label="Confidence Threshold", info="Choose the threshold above which objects should be detected")
                    with gr.Row():
                        cancel_btn = gr.Button(value="Cancel")
                        submit_btn_vid = gr.Button(value="Predict")
            
                with gr.Column(scale=2):
                    with gr.Row():
                        segmentation_vid_output = gr.Image(height=400, label="Segmentation")
                        depth_vid_output = gr.Image(height=400, label="Depth Estimation")
                    
                    with gr.Row():
                        dist_vid_output = gr.Image(height=300, label="Distance")
                        pcd_vid_output = gr.Image(height=300, label="Point Cloud")
            
            gr.Markdown("## Sample Videos")
            gr.Examples(
                examples=[os.path.join(os.path.dirname(__file__), "assets/videos/input_video.mp4")],
                inputs=vid_input,
                # outputs=vid_output,
                # fn=vid_segmenation,
            )

        # image tab logic
        submit_btn_img.click(process_image, inputs=img_input, outputs=[segmentation_img_output, depth_img_output, dist_img_output])
        options_checkbox_img.change(update_segmentation_options, options_checkbox_img, [])
        conf_thres_img.change(update_confidence_threshold, conf_thres_img, [])
        model_type_img.change(model_selector, model_type_img, [])

        # video tab logic
        submit_btn_vid.click(process_video, inputs=vid_input, outputs=[segmentation_vid_output, depth_vid_output, dist_vid_output])
        cancel_btn.click(cancel, inputs=[], outputs=[])
        options_checkbox_vid.change(update_segmentation_options, options_checkbox_vid, [])
        conf_thres_vid.change(update_confidence_threshold, conf_thres_vid, [])
        


    my_app.queue(concurrency_count=5, max_size=20).launch()