import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers class ResNetClassifier: def __init__(self): self.model = keras.applications.ResNet50(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000) def preprocess_image(self, image): img = keras.preprocessing.image.array_to_img(image) img = img.resize((224, 224)) img_array = keras.preprocessing.image.img_to_array(img) img_array = tf.expand_dims(img_array, 0) img_array = keras.applications.resnet50.preprocess_input(img_array) return img_array def classify_image(self, image): # Preprocess the image img_array = self.preprocess_image(image) # Classify the image predictions = self.model.predict(img_array) predicted_classes = keras.applications.imagenet_utils.decode_predictions(predictions, top=3)[0] return predicted_classes