Spaces:
Runtime error
Runtime error
import cv2 | |
import numpy as np | |
from ultralytics import YOLO | |
from ultralytics.yolo.utils.ops import scale_image | |
import random | |
import torch | |
class ImageSegmenter: | |
def __init__(self, model_type="yolov8s-seg") -> None: | |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
self.model = YOLO('models/'+ model_type +'.pt') | |
self.model.to(self.device) | |
self.is_show_bounding_boxes = True | |
self.is_show_segmentation_boundary = False | |
self.is_show_segmentation = False | |
self.confidence_threshold = 0.5 | |
self.cls_clr = {} | |
# params | |
self.bb_thickness = 2 | |
self.bb_clr = (255, 0, 0) | |
# variables | |
self.masks = {} | |
def get_cls_clr(self, cls_id): | |
if cls_id in self.cls_clr: | |
return self.cls_clr[cls_id] | |
# gen rand color | |
r = random.randint(50, 200) | |
g = random.randint(50, 200) | |
b = random.randint(50, 200) | |
self.cls_clr[cls_id] = (r, g, b) | |
return (r, g, b) | |
def predict(self, image): | |
# params | |
objects_data = [] | |
image = image.copy() | |
predictions = self.model.predict(image) | |
cls_ids = predictions[0].boxes.cls.cpu().numpy() | |
bounding_boxes = predictions[0].boxes.xyxy.int().cpu().numpy() | |
cls_conf = predictions[0].boxes.conf.cpu().numpy() | |
# segmentation | |
if predictions[0].masks: | |
seg_mask = predictions[0].masks.data.cpu().numpy() | |
else: | |
seg_mask = np.array([]) | |
for id, cls in enumerate(cls_ids): | |
cls_clr = self.get_cls_clr(cls) | |
# draw filled segmentation region | |
if seg_mask.any() and cls_conf[id] > self.confidence_threshold: | |
self.masks[id] = seg_mask[id] | |
if self.is_show_segmentation: | |
alpha = 0.8 | |
# converting the mask from 1 channel to 3 channels | |
colored_mask = np.expand_dims(seg_mask[id], 0).repeat(3, axis=0) | |
colored_mask = np.moveaxis(colored_mask, 0, -1) | |
# Resize the mask to match the image size, if necessary | |
if image.shape[:2] != seg_mask[id].shape[:2]: | |
colored_mask = cv2.resize(colored_mask, (image.shape[1], image.shape[0])) | |
# filling the mased area with class color | |
masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=cls_clr) | |
image_overlay = masked.filled() | |
image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0) | |
# draw bounding box with class name and score | |
if self.is_show_bounding_boxes and cls_conf[id] > self.confidence_threshold: | |
(x1, y1, x2, y2) = bounding_boxes[id] | |
cls_name = self.model.names[cls] | |
cls_confidence = cls_conf[id] | |
disp_str = cls_name +' '+ str(round(cls_confidence, 2)) | |
cv2.rectangle(image, (x1, y1), (x2, y2), cls_clr, self.bb_thickness) | |
cv2.rectangle(image, (x1, y1), (x1+(len(disp_str)*9), y1+15), cls_clr, -1) | |
cv2.putText(image, disp_str, (x1+5, y1+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) | |
# object variables | |
(x1, y1, x2, y2) = bounding_boxes[id] | |
center = x1+(x2-x1)//2, y1+(y2-y1)//2 | |
objects_data.append([cls, self.model.names[cls], center, self.masks[id], cls_clr]) | |
return image, objects_data |