urbanManul commited on
Commit
beab4e3
Β·
1 Parent(s): 866a272

update-model

Browse files
Files changed (10) hide show
  1. .gitattributes +1 -0
  2. README.md +5 -5
  3. app.py +112 -0
  4. example-1.jpg +0 -0
  5. example-2.jpg +0 -0
  6. example-3.jpg +0 -0
  7. example-4.png +3 -0
  8. example-5.png +0 -0
  9. labels.txt +19 -0
  10. requirements.txt +6 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ example-4.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,10 +1,10 @@
1
  ---
2
- title: Segment Task 3
3
- emoji: 🐒
4
- colorFrom: yellow
5
- colorTo: green
6
  sdk: gradio
7
- sdk_version: 4.2.0
8
  app_file: app.py
9
  pinned: false
10
  ---
 
1
  ---
2
+ title: Segmentation Task 2
3
+ emoji: πŸ‘€
4
+ colorFrom: blue
5
+ colorTo: pink
6
  sdk: gradio
7
+ sdk_version: 3.44.4
8
  app_file: app.py
9
  pinned: false
10
  ---
app.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ from matplotlib import gridspec
4
+ import matplotlib.pyplot as plt
5
+ import numpy as np
6
+ from PIL import Image
7
+ import tensorflow as tf
8
+ from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
+
10
+ model_name = 'nvidia/segformer-b0-finetuned-cityscapes-768-768'
11
+
12
+ feature_extractor = SegformerFeatureExtractor.from_pretrained(
13
+ model_name
14
+ )
15
+ model = TFSegformerForSemanticSegmentation.from_pretrained(
16
+ model_name
17
+ )
18
+
19
+ def ade_palette():
20
+ """ADE20K palette that maps each class to RGB values."""
21
+ return [
22
+ [184, 65, 1],
23
+ [184, 157, 1],
24
+ [120, 184, 1],
25
+ [28, 184, 1],
26
+ [1, 184, 65],
27
+ [1, 184, 157],
28
+ [160, 184, 1],
29
+ [69, 184, 1],
30
+ [1, 184, 25],
31
+ [1, 184, 117],
32
+ [1, 160, 184],
33
+ [1, 69, 184],
34
+ [1, 184, 180],
35
+ [1, 96, 184],
36
+ [1, 5, 184],
37
+ [89, 1, 184],
38
+ [180, 1, 184],
39
+ [184, 1, 97],
40
+ [184, 1, 102]
41
+ ]
42
+
43
+ labels_list = []
44
+
45
+ with open(r'labels.txt', 'r') as fp:
46
+ for line in fp:
47
+ labels_list.append(line[:-1])
48
+
49
+ colormap = np.asarray(ade_palette())
50
+
51
+ def label_to_color_image(label):
52
+ if label.ndim != 2:
53
+ raise ValueError("Expect 2-D input label")
54
+
55
+ if np.max(label) >= len(colormap):
56
+ raise ValueError("label value too large.")
57
+ return colormap[label]
58
+
59
+ def draw_plot(pred_img, seg):
60
+ fig = plt.figure(figsize=(20, 15))
61
+
62
+ grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
63
+
64
+ plt.subplot(grid_spec[0])
65
+ plt.imshow(pred_img)
66
+ plt.axis('off')
67
+ LABEL_NAMES = np.asarray(labels_list)
68
+ FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
69
+ FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
70
+
71
+ unique_labels = np.unique(seg.numpy().astype("uint8"))
72
+ ax = plt.subplot(grid_spec[1])
73
+ plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
74
+ ax.yaxis.tick_right()
75
+ plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
76
+ plt.xticks([], [])
77
+ ax.tick_params(width=0.0, labelsize=25)
78
+ return fig
79
+
80
+ def sepia(input_img):
81
+ input_img = Image.fromarray(input_img)
82
+
83
+ inputs = feature_extractor(images=input_img, return_tensors="tf")
84
+ outputs = model(**inputs)
85
+ logits = outputs.logits
86
+
87
+ logits = tf.transpose(logits, [0, 2, 3, 1])
88
+ logits = tf.image.resize(
89
+ logits, input_img.size[::-1]
90
+ ) # We reverse the shape of `image` because `image.size` returns width and height.
91
+ seg = tf.math.argmax(logits, axis=-1)[0]
92
+
93
+ color_seg = np.zeros(
94
+ (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
95
+ ) # height, width, 3
96
+ for label, color in enumerate(colormap):
97
+ color_seg[seg.numpy() == label, :] = color
98
+
99
+ # Show image + mask
100
+ pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
101
+ pred_img = pred_img.astype(np.uint8)
102
+
103
+ fig = draw_plot(pred_img, seg)
104
+ return fig
105
+
106
+ demo = gr.Interface(fn=sepia,
107
+ inputs=gr.Image(shape=(400, 600)),
108
+ outputs=['plot'],
109
+ examples=['person-1.jpg', 'person-2.jpg', 'person-3.jpg', 'person-4.jpg', 'person-5.jpg'],
110
+ allow_flagging='never')
111
+
112
+ demo.launch()
example-1.jpg ADDED
example-2.jpg ADDED
example-3.jpg ADDED
example-4.png ADDED

Git LFS Details

  • SHA256: e687bda71d7ac4e000d4e08f0124e2400c0a58a8dbb7c5ba254b4cf4712c0844
  • Pointer size: 132 Bytes
  • Size of remote file: 1.71 MB
example-5.png ADDED
labels.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ road
2
+ sidewalk
3
+ building
4
+ wall
5
+ fence
6
+ pole
7
+ traffic light
8
+ traffic sign
9
+ vegetation
10
+ terrain
11
+ sky
12
+ person
13
+ rider
14
+ car
15
+ truck
16
+ bus
17
+ train
18
+ motorcycle
19
+ bicycle
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch
2
+ transformers
3
+ tensorflow
4
+ numpy
5
+ Image
6
+ matplotlib