Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Sean Cho
commited on
Commit
·
4f0083e
1
Parent(s):
0213cb9
add leaderboard
Browse files- src/auto_leaderboard/get_model_metadata.py +56 -0
- src/auto_leaderboard/load_results.py +141 -0
- src/auto_leaderboard/model_metadata_type.py +597 -0
- src/init.py +58 -0
- src/utils_display.py +99 -0
src/auto_leaderboard/get_model_metadata.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import os
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
from src.utils_display import AutoEvalColumn
|
6 |
+
from src.auto_leaderboard.model_metadata_type import get_model_type
|
7 |
+
|
8 |
+
from huggingface_hub import HfApi
|
9 |
+
import huggingface_hub
|
10 |
+
api = HfApi(token=os.environ.get("H4_TOKEN", None))
|
11 |
+
|
12 |
+
|
13 |
+
def get_model_infos_from_hub(leaderboard_data: List[dict]):
|
14 |
+
for model_data in leaderboard_data:
|
15 |
+
model_name = model_data["model_name_for_query"]
|
16 |
+
try:
|
17 |
+
model_info = api.model_info(model_name)
|
18 |
+
except huggingface_hub.utils._errors.RepositoryNotFoundError:
|
19 |
+
print("Repo not found!", model_name)
|
20 |
+
model_data[AutoEvalColumn.license.name] = None
|
21 |
+
model_data[AutoEvalColumn.likes.name] = None
|
22 |
+
model_data[AutoEvalColumn.params.name] = get_model_size(model_name, None)
|
23 |
+
continue
|
24 |
+
|
25 |
+
model_data[AutoEvalColumn.license.name] = get_model_license(model_info)
|
26 |
+
model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info)
|
27 |
+
model_data[AutoEvalColumn.params.name] = get_model_size(model_name, model_info)
|
28 |
+
|
29 |
+
|
30 |
+
def get_model_license(model_info):
|
31 |
+
try:
|
32 |
+
return model_info.cardData["license"]
|
33 |
+
except Exception:
|
34 |
+
return None
|
35 |
+
|
36 |
+
def get_model_likes(model_info):
|
37 |
+
return model_info.likes
|
38 |
+
|
39 |
+
size_pattern = re.compile(r"(\d\.)?\d+(b|m)")
|
40 |
+
|
41 |
+
def get_model_size(model_name, model_info):
|
42 |
+
# In billions
|
43 |
+
try:
|
44 |
+
return round(model_info.safetensors["total"] / 1e9, 3)
|
45 |
+
except AttributeError:
|
46 |
+
try:
|
47 |
+
size_match = re.search(size_pattern, model_name.lower())
|
48 |
+
size = size_match.group(0)
|
49 |
+
return round(float(size[:-1]) if size[-1] == "b" else float(size[:-1]) / 1e3, 3)
|
50 |
+
except AttributeError:
|
51 |
+
return None
|
52 |
+
|
53 |
+
|
54 |
+
def apply_metadata(leaderboard_data: List[dict]):
|
55 |
+
get_model_type(leaderboard_data)
|
56 |
+
get_model_infos_from_hub(leaderboard_data)
|
src/auto_leaderboard/load_results.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
|
3 |
+
import glob
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
from typing import Dict, List, Tuple
|
7 |
+
import dateutil
|
8 |
+
|
9 |
+
from src.utils_display import AutoEvalColumn, make_clickable_model
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
METRICS = ["acc_norm", "acc_norm", "acc", "mc2"]
|
13 |
+
BENCHMARKS = ["arc:challenge", "hellaswag", "hendrycksTest", "truthfulqa:mc"]
|
14 |
+
BENCH_TO_NAME = {
|
15 |
+
"arc:challenge": AutoEvalColumn.arc.name,
|
16 |
+
"hellaswag": AutoEvalColumn.hellaswag.name,
|
17 |
+
"hendrycksTest": AutoEvalColumn.mmlu.name,
|
18 |
+
"truthfulqa:mc": AutoEvalColumn.truthfulqa.name,
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
@dataclass
|
23 |
+
class EvalResult:
|
24 |
+
eval_name: str
|
25 |
+
org: str
|
26 |
+
model: str
|
27 |
+
revision: str
|
28 |
+
results: dict
|
29 |
+
precision: str = ""
|
30 |
+
model_type: str = ""
|
31 |
+
weight_type: str = ""
|
32 |
+
|
33 |
+
def to_dict(self):
|
34 |
+
if self.org is not None:
|
35 |
+
base_model = f"{self.org}/{self.model}"
|
36 |
+
else:
|
37 |
+
base_model = f"{self.model}"
|
38 |
+
data_dict = {}
|
39 |
+
|
40 |
+
data_dict["eval_name"] = self.eval_name # not a column, just a save name
|
41 |
+
data_dict["weight_type"] = self.weight_type # not a column, just a save name
|
42 |
+
data_dict[AutoEvalColumn.precision.name] = self.precision
|
43 |
+
data_dict[AutoEvalColumn.model_type.name] = self.model_type
|
44 |
+
data_dict[AutoEvalColumn.model.name] = make_clickable_model(base_model)
|
45 |
+
data_dict[AutoEvalColumn.dummy.name] = base_model
|
46 |
+
data_dict[AutoEvalColumn.revision.name] = self.revision
|
47 |
+
data_dict[AutoEvalColumn.average.name] = sum([v for k, v in self.results.items()]) / 4.0
|
48 |
+
|
49 |
+
for benchmark in BENCHMARKS:
|
50 |
+
if benchmark not in self.results.keys():
|
51 |
+
self.results[benchmark] = None
|
52 |
+
|
53 |
+
for k, v in BENCH_TO_NAME.items():
|
54 |
+
data_dict[v] = self.results[k]
|
55 |
+
|
56 |
+
return data_dict
|
57 |
+
|
58 |
+
|
59 |
+
def parse_eval_result(json_filepath: str) -> Tuple[str, list[dict]]:
|
60 |
+
with open(json_filepath) as fp:
|
61 |
+
data = json.load(fp)
|
62 |
+
|
63 |
+
|
64 |
+
for mmlu_k in ["harness|hendrycksTest-abstract_algebra|5", "hendrycksTest-abstract_algebra"]:
|
65 |
+
if mmlu_k in data["versions"] and data["versions"][mmlu_k] == 0:
|
66 |
+
return None, [] # we skip models with the wrong version
|
67 |
+
|
68 |
+
try:
|
69 |
+
config = data["config"]
|
70 |
+
except KeyError:
|
71 |
+
config = data["config_general"]
|
72 |
+
model = config.get("model_name", None)
|
73 |
+
if model is None:
|
74 |
+
model = config.get("model_args", None)
|
75 |
+
|
76 |
+
model_sha = config.get("model_sha", "")
|
77 |
+
model_split = model.split("/", 1)
|
78 |
+
|
79 |
+
precision = config.get("model_dtype")
|
80 |
+
|
81 |
+
model = model_split[-1]
|
82 |
+
|
83 |
+
if len(model_split) == 1:
|
84 |
+
org = None
|
85 |
+
model = model_split[0]
|
86 |
+
result_key = f"{model}_{model_sha}_{precision}"
|
87 |
+
else:
|
88 |
+
org = model_split[0]
|
89 |
+
model = model_split[1]
|
90 |
+
result_key = f"{org}_{model}_{model_sha}_{precision}"
|
91 |
+
|
92 |
+
eval_results = []
|
93 |
+
for benchmark, metric in zip(BENCHMARKS, METRICS):
|
94 |
+
accs = np.array([v[metric] for k, v in data["results"].items() if benchmark in k])
|
95 |
+
if accs.size == 0:
|
96 |
+
continue
|
97 |
+
mean_acc = np.mean(accs) * 100.0
|
98 |
+
eval_results.append(EvalResult(
|
99 |
+
eval_name=result_key, org=org, model=model, revision=model_sha, results={benchmark: mean_acc}, precision=precision, #todo model_type=, weight_type=
|
100 |
+
))
|
101 |
+
|
102 |
+
return result_key, eval_results
|
103 |
+
|
104 |
+
|
105 |
+
def get_eval_results(is_public) -> List[EvalResult]:
|
106 |
+
json_filepaths = []
|
107 |
+
|
108 |
+
for root, dir, files in os.walk("eval-results"):
|
109 |
+
# We should only have json files in model results
|
110 |
+
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
111 |
+
continue
|
112 |
+
|
113 |
+
# Sort the files by date
|
114 |
+
# store results by precision maybe?
|
115 |
+
try:
|
116 |
+
files.sort(key=lambda x: dateutil.parser.parse(x.split("_", 1)[-1][:-5]))
|
117 |
+
except dateutil.parser._parser.ParserError:
|
118 |
+
files = [files[-1]]
|
119 |
+
|
120 |
+
#up_to_date = files[-1]
|
121 |
+
for file in files:
|
122 |
+
json_filepaths.append(os.path.join(root, file))
|
123 |
+
|
124 |
+
eval_results = {}
|
125 |
+
for json_filepath in json_filepaths:
|
126 |
+
result_key, results = parse_eval_result(json_filepath)
|
127 |
+
for eval_result in results:
|
128 |
+
if result_key in eval_results.keys():
|
129 |
+
eval_results[result_key].results.update(eval_result.results)
|
130 |
+
else:
|
131 |
+
eval_results[result_key] = eval_result
|
132 |
+
|
133 |
+
eval_results = [v for v in eval_results.values()]
|
134 |
+
|
135 |
+
return eval_results
|
136 |
+
|
137 |
+
|
138 |
+
def get_eval_results_dicts(is_public=True) -> List[Dict]:
|
139 |
+
eval_results = get_eval_results(is_public)
|
140 |
+
|
141 |
+
return [e.to_dict() for e in eval_results]
|
src/auto_leaderboard/model_metadata_type.py
ADDED
@@ -0,0 +1,597 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from enum import Enum
|
3 |
+
import glob
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
from typing import Dict, List
|
7 |
+
|
8 |
+
from ..utils_display import AutoEvalColumn
|
9 |
+
|
10 |
+
@dataclass
|
11 |
+
class ModelInfo:
|
12 |
+
name: str
|
13 |
+
symbol: str # emoji
|
14 |
+
|
15 |
+
|
16 |
+
class ModelType(Enum):
|
17 |
+
PT = ModelInfo(name="pretrained", symbol="🟢")
|
18 |
+
FT = ModelInfo(name="fine-tuned", symbol="🔶")
|
19 |
+
IFT = ModelInfo(name="instruction-tuned", symbol="⭕")
|
20 |
+
RL = ModelInfo(name="RL-tuned", symbol="🟦")
|
21 |
+
Unknown = ModelInfo(name="Unknown, add type to request file!", symbol="?")
|
22 |
+
|
23 |
+
def to_str(self, separator = " "):
|
24 |
+
return f"{self.value.symbol}{separator}{self.value.name}"
|
25 |
+
|
26 |
+
|
27 |
+
TYPE_METADATA: Dict[str, ModelType] = {
|
28 |
+
'notstoic/PygmalionCoT-7b': ModelType.IFT,
|
29 |
+
'aisquared/dlite-v1-355m': ModelType.IFT,
|
30 |
+
'aisquared/dlite-v1-1_5b': ModelType.IFT,
|
31 |
+
'aisquared/dlite-v1-774m': ModelType.IFT,
|
32 |
+
'aisquared/dlite-v1-124m': ModelType.IFT,
|
33 |
+
'aisquared/chopt-2_7b': ModelType.IFT,
|
34 |
+
'aisquared/dlite-v2-124m': ModelType.IFT,
|
35 |
+
'aisquared/dlite-v2-774m': ModelType.IFT,
|
36 |
+
'aisquared/dlite-v2-1_5b': ModelType.IFT,
|
37 |
+
'aisquared/chopt-1_3b': ModelType.IFT,
|
38 |
+
'aisquared/dlite-v2-355m': ModelType.IFT,
|
39 |
+
'augtoma/qCammel-13': ModelType.IFT,
|
40 |
+
'Aspik101/Llama-2-7b-hf-instruct-pl-lora_unload': ModelType.IFT,
|
41 |
+
'Aspik101/vicuna-7b-v1.3-instruct-pl-lora_unload': ModelType.IFT,
|
42 |
+
'TheBloke/alpaca-lora-65B-HF': ModelType.FT,
|
43 |
+
'TheBloke/tulu-7B-fp16': ModelType.IFT,
|
44 |
+
'TheBloke/guanaco-7B-HF': ModelType.FT,
|
45 |
+
'TheBloke/koala-7B-HF': ModelType.FT,
|
46 |
+
'TheBloke/wizardLM-7B-HF': ModelType.IFT,
|
47 |
+
'TheBloke/airoboros-13B-HF': ModelType.IFT,
|
48 |
+
'TheBloke/koala-13B-HF': ModelType.FT,
|
49 |
+
'TheBloke/Wizard-Vicuna-7B-Uncensored-HF': ModelType.FT,
|
50 |
+
'TheBloke/dromedary-65b-lora-HF': ModelType.IFT,
|
51 |
+
'TheBloke/wizardLM-13B-1.0-fp16': ModelType.IFT,
|
52 |
+
'TheBloke/WizardLM-13B-V1-1-SuperHOT-8K-fp16': ModelType.FT,
|
53 |
+
'TheBloke/Wizard-Vicuna-30B-Uncensored-fp16': ModelType.FT,
|
54 |
+
'TheBloke/wizard-vicuna-13B-HF': ModelType.IFT,
|
55 |
+
'TheBloke/UltraLM-13B-fp16': ModelType.IFT,
|
56 |
+
'TheBloke/OpenAssistant-FT-7-Llama-30B-HF': ModelType.FT,
|
57 |
+
'TheBloke/vicuna-13B-1.1-HF': ModelType.IFT,
|
58 |
+
'TheBloke/guanaco-13B-HF': ModelType.FT,
|
59 |
+
'TheBloke/guanaco-65B-HF': ModelType.FT,
|
60 |
+
'TheBloke/airoboros-7b-gpt4-fp16': ModelType.IFT,
|
61 |
+
'TheBloke/llama-30b-supercot-SuperHOT-8K-fp16': ModelType.IFT,
|
62 |
+
'TheBloke/Llama-2-13B-fp16': ModelType.PT,
|
63 |
+
'TheBloke/llama-2-70b-Guanaco-QLoRA-fp16': ModelType.FT,
|
64 |
+
'TheBloke/landmark-attention-llama7b-fp16': ModelType.IFT,
|
65 |
+
'TheBloke/Planner-7B-fp16': ModelType.IFT,
|
66 |
+
'TheBloke/Wizard-Vicuna-13B-Uncensored-HF': ModelType.FT,
|
67 |
+
'TheBloke/gpt4-alpaca-lora-13B-HF': ModelType.IFT,
|
68 |
+
'TheBloke/gpt4-x-vicuna-13B-HF': ModelType.IFT,
|
69 |
+
'TheBloke/gpt4-alpaca-lora_mlp-65B-HF': ModelType.IFT,
|
70 |
+
'TheBloke/tulu-13B-fp16': ModelType.IFT,
|
71 |
+
'TheBloke/VicUnlocked-alpaca-65B-QLoRA-fp16': ModelType.IFT,
|
72 |
+
'TheBloke/Llama-2-70B-fp16': ModelType.IFT,
|
73 |
+
'TheBloke/WizardLM-30B-fp16': ModelType.IFT,
|
74 |
+
'TheBloke/robin-13B-v2-fp16': ModelType.FT,
|
75 |
+
'TheBloke/robin-33B-v2-fp16': ModelType.FT,
|
76 |
+
'TheBloke/Vicuna-13B-CoT-fp16': ModelType.IFT,
|
77 |
+
'TheBloke/Vicuna-33B-1-3-SuperHOT-8K-fp16': ModelType.IFT,
|
78 |
+
'TheBloke/Wizard-Vicuna-30B-Superhot-8K-fp16': ModelType.FT,
|
79 |
+
'TheBloke/Nous-Hermes-13B-SuperHOT-8K-fp16': ModelType.IFT,
|
80 |
+
'TheBloke/GPlatty-30B-SuperHOT-8K-fp16': ModelType.FT,
|
81 |
+
'TheBloke/CAMEL-33B-Combined-Data-SuperHOT-8K-fp16': ModelType.IFT,
|
82 |
+
'TheBloke/Chinese-Alpaca-33B-SuperHOT-8K-fp16': ModelType.IFT,
|
83 |
+
'jphme/orca_mini_v2_ger_7b': ModelType.IFT,
|
84 |
+
'Ejafa/vicuna_7B_vanilla_1.1': ModelType.FT,
|
85 |
+
'kevinpro/Vicuna-13B-CoT': ModelType.IFT,
|
86 |
+
'AlekseyKorshuk/pygmalion-6b-vicuna-chatml': ModelType.FT,
|
87 |
+
'AlekseyKorshuk/chatml-pyg-v1': ModelType.FT,
|
88 |
+
'concedo/Vicuzard-30B-Uncensored': ModelType.FT,
|
89 |
+
'concedo/OPT-19M-ChatSalad': ModelType.FT,
|
90 |
+
'concedo/Pythia-70M-ChatSalad': ModelType.FT,
|
91 |
+
'digitous/13B-HyperMantis': ModelType.IFT,
|
92 |
+
'digitous/Adventien-GPTJ': ModelType.FT,
|
93 |
+
'digitous/Alpacino13b': ModelType.IFT,
|
94 |
+
'digitous/GPT-R': ModelType.IFT,
|
95 |
+
'digitous/Javelin-R': ModelType.IFT,
|
96 |
+
'digitous/Javalion-GPTJ': ModelType.IFT,
|
97 |
+
'digitous/Javalion-R': ModelType.IFT,
|
98 |
+
'digitous/Skegma-GPTJ': ModelType.FT,
|
99 |
+
'digitous/Alpacino30b': ModelType.IFT,
|
100 |
+
'digitous/Janin-GPTJ': ModelType.FT,
|
101 |
+
'digitous/Janin-R': ModelType.FT,
|
102 |
+
'digitous/Javelin-GPTJ': ModelType.FT,
|
103 |
+
'SaylorTwift/gpt2_test': ModelType.PT,
|
104 |
+
'anton-l/gpt-j-tiny-random': ModelType.FT,
|
105 |
+
'Andron00e/YetAnother_Open-Llama-3B-LoRA-OpenOrca': ModelType.FT,
|
106 |
+
'Lazycuber/pyg-instruct-wizardlm': ModelType.FT,
|
107 |
+
'Lazycuber/Janemalion-6B': ModelType.FT,
|
108 |
+
'IDEA-CCNL/Ziya-LLaMA-13B-Pretrain-v1': ModelType.FT,
|
109 |
+
'IDEA-CCNL/Ziya-LLaMA-13B-v1': ModelType.IFT,
|
110 |
+
'dsvv-cair/alpaca-cleaned-llama-30b-bf16': ModelType.FT,
|
111 |
+
'gpt2-medium': ModelType.PT,
|
112 |
+
'camel-ai/CAMEL-13B-Combined-Data': ModelType.IFT,
|
113 |
+
'camel-ai/CAMEL-13B-Role-Playing-Data': ModelType.FT,
|
114 |
+
'camel-ai/CAMEL-33B-Combined-Data': ModelType.IFT,
|
115 |
+
'PygmalionAI/pygmalion-6b': ModelType.FT,
|
116 |
+
'PygmalionAI/metharme-1.3b': ModelType.IFT,
|
117 |
+
'PygmalionAI/pygmalion-1.3b': ModelType.FT,
|
118 |
+
'PygmalionAI/pygmalion-350m': ModelType.FT,
|
119 |
+
'PygmalionAI/pygmalion-2.7b': ModelType.FT,
|
120 |
+
'medalpaca/medalpaca-7b': ModelType.FT,
|
121 |
+
'lilloukas/Platypus-30B': ModelType.IFT,
|
122 |
+
'lilloukas/GPlatty-30B': ModelType.FT,
|
123 |
+
'mncai/chatdoctor': ModelType.FT,
|
124 |
+
'chaoyi-wu/MedLLaMA_13B': ModelType.FT,
|
125 |
+
'LoupGarou/WizardCoder-Guanaco-15B-V1.0': ModelType.IFT,
|
126 |
+
'LoupGarou/WizardCoder-Guanaco-15B-V1.1': ModelType.FT,
|
127 |
+
'hakurei/instruct-12b': ModelType.IFT,
|
128 |
+
'hakurei/lotus-12B': ModelType.FT,
|
129 |
+
'shibing624/chinese-llama-plus-13b-hf': ModelType.IFT,
|
130 |
+
'shibing624/chinese-alpaca-plus-7b-hf': ModelType.IFT,
|
131 |
+
'shibing624/chinese-alpaca-plus-13b-hf': ModelType.IFT,
|
132 |
+
'mosaicml/mpt-7b-instruct': ModelType.IFT,
|
133 |
+
'mosaicml/mpt-30b-chat': ModelType.IFT,
|
134 |
+
'mosaicml/mpt-7b-storywriter': ModelType.FT,
|
135 |
+
'mosaicml/mpt-30b-instruct': ModelType.IFT,
|
136 |
+
'mosaicml/mpt-7b-chat': ModelType.IFT,
|
137 |
+
'mosaicml/mpt-30b': ModelType.PT,
|
138 |
+
'Corianas/111m': ModelType.IFT,
|
139 |
+
'Corianas/Quokka_1.3b': ModelType.IFT,
|
140 |
+
'Corianas/256_5epoch': ModelType.FT,
|
141 |
+
'Corianas/Quokka_256m': ModelType.IFT,
|
142 |
+
'Corianas/Quokka_590m': ModelType.IFT,
|
143 |
+
'Corianas/gpt-j-6B-Dolly': ModelType.FT,
|
144 |
+
'Corianas/Quokka_2.7b': ModelType.IFT,
|
145 |
+
'cyberagent/open-calm-7b': ModelType.FT,
|
146 |
+
'Aspik101/Nous-Hermes-13b-pl-lora_unload': ModelType.IFT,
|
147 |
+
'THUDM/chatglm2-6b': ModelType.IFT,
|
148 |
+
'MetaIX/GPT4-X-Alpasta-30b': ModelType.IFT,
|
149 |
+
'NYTK/PULI-GPTrio': ModelType.PT,
|
150 |
+
'EleutherAI/pythia-1.3b': ModelType.PT,
|
151 |
+
'EleutherAI/pythia-2.8b-deduped': ModelType.PT,
|
152 |
+
'EleutherAI/gpt-neo-125m': ModelType.PT,
|
153 |
+
'EleutherAI/pythia-160m': ModelType.PT,
|
154 |
+
'EleutherAI/gpt-neo-2.7B': ModelType.PT,
|
155 |
+
'EleutherAI/pythia-1b-deduped': ModelType.PT,
|
156 |
+
'EleutherAI/pythia-6.7b': ModelType.PT,
|
157 |
+
'EleutherAI/pythia-70m-deduped': ModelType.PT,
|
158 |
+
'EleutherAI/gpt-neox-20b': ModelType.PT,
|
159 |
+
'EleutherAI/pythia-1.4b-deduped': ModelType.PT,
|
160 |
+
'EleutherAI/pythia-2.7b': ModelType.PT,
|
161 |
+
'EleutherAI/pythia-6.9b-deduped': ModelType.PT,
|
162 |
+
'EleutherAI/pythia-70m': ModelType.PT,
|
163 |
+
'EleutherAI/gpt-j-6b': ModelType.PT,
|
164 |
+
'EleutherAI/pythia-12b-deduped': ModelType.PT,
|
165 |
+
'EleutherAI/gpt-neo-1.3B': ModelType.PT,
|
166 |
+
'EleutherAI/pythia-410m-deduped': ModelType.PT,
|
167 |
+
'EleutherAI/pythia-160m-deduped': ModelType.PT,
|
168 |
+
'EleutherAI/polyglot-ko-12.8b': ModelType.PT,
|
169 |
+
'EleutherAI/pythia-12b': ModelType.PT,
|
170 |
+
'roneneldan/TinyStories-33M': ModelType.PT,
|
171 |
+
'roneneldan/TinyStories-28M': ModelType.PT,
|
172 |
+
'roneneldan/TinyStories-1M': ModelType.PT,
|
173 |
+
'roneneldan/TinyStories-8M': ModelType.PT,
|
174 |
+
'roneneldan/TinyStories-3M': ModelType.PT,
|
175 |
+
'jerryjalapeno/nart-100k-7b': ModelType.FT,
|
176 |
+
'lmsys/vicuna-13b-v1.3': ModelType.IFT,
|
177 |
+
'lmsys/vicuna-7b-v1.3': ModelType.IFT,
|
178 |
+
'lmsys/vicuna-13b-v1.1': ModelType.IFT,
|
179 |
+
'lmsys/vicuna-13b-delta-v1.1': ModelType.IFT,
|
180 |
+
'lmsys/vicuna-7b-delta-v1.1': ModelType.IFT,
|
181 |
+
'abhiramtirumala/DialoGPT-sarcastic-medium': ModelType.FT,
|
182 |
+
'haonan-li/bactrian-x-llama-13b-merged': ModelType.IFT,
|
183 |
+
'Gryphe/MythoLogic-13b': ModelType.IFT,
|
184 |
+
'Gryphe/MythoBoros-13b': ModelType.IFT,
|
185 |
+
'pillowtalks-ai/delta13b': ModelType.FT,
|
186 |
+
'wannaphong/openthaigpt-0.1.0-beta-full-model_for_open_llm_leaderboard': ModelType.FT,
|
187 |
+
'bigscience/bloom-7b1': ModelType.PT,
|
188 |
+
'bigcode/tiny_starcoder_py': ModelType.PT,
|
189 |
+
'bigcode/starcoderplus': ModelType.FT,
|
190 |
+
'bigcode/gpt_bigcode-santacoder': ModelType.PT,
|
191 |
+
'bigcode/starcoder': ModelType.PT,
|
192 |
+
'Open-Orca/OpenOrca-Preview1-13B': ModelType.IFT,
|
193 |
+
'microsoft/DialoGPT-large': ModelType.FT,
|
194 |
+
'microsoft/DialoGPT-small': ModelType.FT,
|
195 |
+
'microsoft/DialoGPT-medium': ModelType.FT,
|
196 |
+
'microsoft/CodeGPT-small-py': ModelType.FT,
|
197 |
+
'Tincando/fiction_story_generator': ModelType.FT,
|
198 |
+
'Pirr/pythia-13b-deduped-green_devil': ModelType.FT,
|
199 |
+
'Aeala/GPT4-x-AlpacaDente2-30b': ModelType.FT,
|
200 |
+
'Aeala/GPT4-x-AlpacaDente-30b': ModelType.FT,
|
201 |
+
'Aeala/GPT4-x-Alpasta-13b': ModelType.FT,
|
202 |
+
'Aeala/VicUnlocked-alpaca-30b': ModelType.IFT,
|
203 |
+
'Tap-M/Luna-AI-Llama2-Uncensored': ModelType.FT,
|
204 |
+
'illuin/test-custom-llama': ModelType.FT,
|
205 |
+
'dvruette/oasst-llama-13b-2-epochs': ModelType.FT,
|
206 |
+
'dvruette/oasst-gpt-neox-20b-1000-steps': ModelType.FT,
|
207 |
+
'dvruette/llama-13b-pretrained-dropout': ModelType.PT,
|
208 |
+
'dvruette/llama-13b-pretrained': ModelType.PT,
|
209 |
+
'dvruette/llama-13b-pretrained-sft-epoch-1': ModelType.FT,
|
210 |
+
'dvruette/llama-13b-pretrained-sft-do2': ModelType.FT,
|
211 |
+
'dvruette/oasst-gpt-neox-20b-3000-steps': ModelType.FT,
|
212 |
+
'dvruette/oasst-pythia-12b-pretrained-sft': ModelType.FT,
|
213 |
+
'dvruette/oasst-pythia-6.9b-4000-steps': ModelType.FT,
|
214 |
+
'dvruette/gpt-neox-20b-full-precision': ModelType.FT,
|
215 |
+
'dvruette/oasst-llama-13b-1000-steps': ModelType.FT,
|
216 |
+
'openlm-research/open_llama_7b_700bt_preview': ModelType.PT,
|
217 |
+
'openlm-research/open_llama_7b': ModelType.PT,
|
218 |
+
'openlm-research/open_llama_7b_v2': ModelType.PT,
|
219 |
+
'openlm-research/open_llama_3b': ModelType.PT,
|
220 |
+
'openlm-research/open_llama_13b': ModelType.PT,
|
221 |
+
'openlm-research/open_llama_3b_v2': ModelType.PT,
|
222 |
+
'PocketDoc/Dans-PileOfSets-Mk1-llama-13b-merged': ModelType.IFT,
|
223 |
+
'GeorgiaTechResearchInstitute/galpaca-30b': ModelType.IFT,
|
224 |
+
'GeorgiaTechResearchInstitute/starcoder-gpteacher-code-instruct': ModelType.IFT,
|
225 |
+
'databricks/dolly-v2-7b': ModelType.IFT,
|
226 |
+
'databricks/dolly-v2-3b': ModelType.IFT,
|
227 |
+
'databricks/dolly-v2-12b': ModelType.IFT,
|
228 |
+
'Rachneet/gpt2-xl-alpaca': ModelType.FT,
|
229 |
+
'Locutusque/gpt2-conversational-or-qa': ModelType.FT,
|
230 |
+
'psyche/kogpt': ModelType.FT,
|
231 |
+
'NbAiLab/nb-gpt-j-6B-alpaca': ModelType.IFT,
|
232 |
+
'Mikael110/llama-2-7b-guanaco-fp16': ModelType.FT,
|
233 |
+
'Mikael110/llama-2-13b-guanaco-fp16': ModelType.FT,
|
234 |
+
'Fredithefish/CrimsonPajama': ModelType.IFT,
|
235 |
+
'Fredithefish/RedPajama-INCITE-Chat-3B-ShareGPT-11K': ModelType.FT,
|
236 |
+
'Fredithefish/ScarletPajama-3B-HF': ModelType.FT,
|
237 |
+
'Fredithefish/RedPajama-INCITE-Chat-3B-Instruction-Tuning-with-GPT-4': ModelType.IFT,
|
238 |
+
'acrastt/RedPajama-INCITE-Chat-Instruct-3B-V1': ModelType.IFT,
|
239 |
+
'eachadea/vicuna-13b-1.1': ModelType.FT,
|
240 |
+
'eachadea/vicuna-7b-1.1': ModelType.FT,
|
241 |
+
'eachadea/vicuna-13b': ModelType.FT,
|
242 |
+
'openaccess-ai-collective/wizard-mega-13b': ModelType.IFT,
|
243 |
+
'openaccess-ai-collective/manticore-13b': ModelType.IFT,
|
244 |
+
'openaccess-ai-collective/manticore-30b-chat-pyg-alpha': ModelType.IFT,
|
245 |
+
'openaccess-ai-collective/minotaur-13b': ModelType.IFT,
|
246 |
+
'openaccess-ai-collective/minotaur-13b-fixed': ModelType.IFT,
|
247 |
+
'openaccess-ai-collective/hippogriff-30b-chat': ModelType.IFT,
|
248 |
+
'openaccess-ai-collective/manticore-13b-chat-pyg': ModelType.IFT,
|
249 |
+
'pythainlp/wangchanglm-7.5B-sft-enth': ModelType.IFT,
|
250 |
+
'pythainlp/wangchanglm-7.5B-sft-en-sharded': ModelType.IFT,
|
251 |
+
'euclaise/gpt-neox-122m-minipile-digits': ModelType.FT,
|
252 |
+
'stabilityai/StableBeluga1-Delta': ModelType.IFT,
|
253 |
+
'stabilityai/stablelm-tuned-alpha-7b': ModelType.IFT,
|
254 |
+
'stabilityai/StableBeluga2': ModelType.IFT,
|
255 |
+
'stabilityai/StableBeluga-13B': ModelType.IFT,
|
256 |
+
'stabilityai/StableBeluga-7B': ModelType.IFT,
|
257 |
+
'stabilityai/stablelm-base-alpha-7b': ModelType.PT,
|
258 |
+
'stabilityai/stablelm-base-alpha-3b': ModelType.PT,
|
259 |
+
'stabilityai/stablelm-tuned-alpha-3b': ModelType.IFT,
|
260 |
+
'alibidaran/medical_transcription_generator': ModelType.FT,
|
261 |
+
'CalderaAI/30B-Lazarus': ModelType.IFT,
|
262 |
+
'CalderaAI/13B-BlueMethod': ModelType.IFT,
|
263 |
+
'CalderaAI/13B-Ouroboros': ModelType.IFT,
|
264 |
+
'KoboldAI/OPT-13B-Erebus': ModelType.FT,
|
265 |
+
'KoboldAI/GPT-J-6B-Janeway': ModelType.FT,
|
266 |
+
'KoboldAI/GPT-J-6B-Shinen': ModelType.FT,
|
267 |
+
'KoboldAI/fairseq-dense-2.7B': ModelType.PT,
|
268 |
+
'KoboldAI/OPT-6B-nerys-v2': ModelType.FT,
|
269 |
+
'KoboldAI/GPT-NeoX-20B-Skein': ModelType.FT,
|
270 |
+
'KoboldAI/PPO_Pygway-6b-Mix': ModelType.FT,
|
271 |
+
'KoboldAI/fairseq-dense-6.7B': ModelType.PT,
|
272 |
+
'KoboldAI/fairseq-dense-125M': ModelType.PT,
|
273 |
+
'KoboldAI/OPT-13B-Nerybus-Mix': ModelType.FT,
|
274 |
+
'KoboldAI/OPT-2.7B-Erebus': ModelType.FT,
|
275 |
+
'KoboldAI/OPT-350M-Nerys-v2': ModelType.FT,
|
276 |
+
'KoboldAI/OPT-2.7B-Nerys-v2': ModelType.FT,
|
277 |
+
'KoboldAI/OPT-2.7B-Nerybus-Mix': ModelType.FT,
|
278 |
+
'KoboldAI/OPT-13B-Nerys-v2': ModelType.FT,
|
279 |
+
'KoboldAI/GPT-NeoX-20B-Erebus': ModelType.FT,
|
280 |
+
'KoboldAI/OPT-6.7B-Erebus': ModelType.FT,
|
281 |
+
'KoboldAI/fairseq-dense-355M': ModelType.PT,
|
282 |
+
'KoboldAI/OPT-6.7B-Nerybus-Mix': ModelType.FT,
|
283 |
+
'KoboldAI/GPT-J-6B-Adventure': ModelType.FT,
|
284 |
+
'KoboldAI/OPT-350M-Erebus': ModelType.FT,
|
285 |
+
'KoboldAI/GPT-J-6B-Skein': ModelType.FT,
|
286 |
+
'KoboldAI/OPT-30B-Erebus': ModelType.FT,
|
287 |
+
'klosax/pythia-160m-deduped-step92k-193bt': ModelType.PT,
|
288 |
+
'klosax/open_llama_3b_350bt_preview': ModelType.PT,
|
289 |
+
'klosax/openllama-3b-350bt': ModelType.PT,
|
290 |
+
'klosax/pythia-70m-deduped-step44k-92bt': ModelType.PT,
|
291 |
+
'klosax/open_llama_13b_600bt_preview': ModelType.PT,
|
292 |
+
'klosax/open_llama_7b_400bt_preview': ModelType.PT,
|
293 |
+
'kfkas/Llama-2-ko-7b-Chat': ModelType.IFT,
|
294 |
+
'WeOpenML/Alpaca-7B-v1': ModelType.IFT,
|
295 |
+
'WeOpenML/PandaLM-Alpaca-7B-v1': ModelType.IFT,
|
296 |
+
'TFLai/gpt2-turkish-uncased': ModelType.FT,
|
297 |
+
'ehartford/WizardLM-13B-Uncensored': ModelType.IFT,
|
298 |
+
'ehartford/dolphin-llama-13b': ModelType.IFT,
|
299 |
+
'ehartford/Wizard-Vicuna-30B-Uncensored': ModelType.FT,
|
300 |
+
'ehartford/WizardLM-30B-Uncensored': ModelType.IFT,
|
301 |
+
'ehartford/Wizard-Vicuna-13B-Uncensored': ModelType.FT,
|
302 |
+
'ehartford/WizardLM-7B-Uncensored': ModelType.IFT,
|
303 |
+
'ehartford/based-30b': ModelType.FT,
|
304 |
+
'ehartford/Wizard-Vicuna-7B-Uncensored': ModelType.FT,
|
305 |
+
'wahaha1987/llama_7b_sharegpt94k_fastchat': ModelType.FT,
|
306 |
+
'wahaha1987/llama_13b_sharegpt94k_fastchat': ModelType.FT,
|
307 |
+
'OpenAssistant/oasst-sft-1-pythia-12b': ModelType.FT,
|
308 |
+
'OpenAssistant/stablelm-7b-sft-v7-epoch-3': ModelType.IFT,
|
309 |
+
'OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5': ModelType.FT,
|
310 |
+
'OpenAssistant/pythia-12b-sft-v8-2.5k-steps': ModelType.IFT,
|
311 |
+
'OpenAssistant/pythia-12b-sft-v8-7k-steps': ModelType.IFT,
|
312 |
+
'OpenAssistant/pythia-12b-pre-v8-12.5k-steps': ModelType.IFT,
|
313 |
+
'OpenAssistant/llama2-13b-orca-8k-3319': ModelType.IFT,
|
314 |
+
'junelee/wizard-vicuna-13b': ModelType.FT,
|
315 |
+
'BreadAi/gpt-YA-1-1_160M': ModelType.PT,
|
316 |
+
'BreadAi/MuseCan': ModelType.PT,
|
317 |
+
'BreadAi/MusePy-1-2': ModelType.PT,
|
318 |
+
'BreadAi/DiscordPy': ModelType.PT,
|
319 |
+
'BreadAi/PM_modelV2': ModelType.PT,
|
320 |
+
'BreadAi/gpt-Youtube': ModelType.PT,
|
321 |
+
'BreadAi/StoryPy': ModelType.FT,
|
322 |
+
'julianweng/Llama-2-7b-chat-orcah': ModelType.FT,
|
323 |
+
'AGI-inc/lora_moe_7b_baseline': ModelType.FT,
|
324 |
+
'AGI-inc/lora_moe_7b': ModelType.FT,
|
325 |
+
'togethercomputer/GPT-NeoXT-Chat-Base-20B': ModelType.IFT,
|
326 |
+
'togethercomputer/RedPajama-INCITE-Chat-7B-v0.1': ModelType.IFT,
|
327 |
+
'togethercomputer/RedPajama-INCITE-Instruct-7B-v0.1': ModelType.IFT,
|
328 |
+
'togethercomputer/RedPajama-INCITE-7B-Base': ModelType.PT,
|
329 |
+
'togethercomputer/RedPajama-INCITE-7B-Instruct': ModelType.IFT,
|
330 |
+
'togethercomputer/RedPajama-INCITE-Base-3B-v1': ModelType.PT,
|
331 |
+
'togethercomputer/Pythia-Chat-Base-7B': ModelType.IFT,
|
332 |
+
'togethercomputer/RedPajama-INCITE-Base-7B-v0.1': ModelType.PT,
|
333 |
+
'togethercomputer/GPT-JT-6B-v1': ModelType.IFT,
|
334 |
+
'togethercomputer/GPT-JT-6B-v0': ModelType.IFT,
|
335 |
+
'togethercomputer/RedPajama-INCITE-Chat-3B-v1': ModelType.IFT,
|
336 |
+
'togethercomputer/RedPajama-INCITE-7B-Chat': ModelType.IFT,
|
337 |
+
'togethercomputer/RedPajama-INCITE-Instruct-3B-v1': ModelType.IFT,
|
338 |
+
'Writer/camel-5b-hf': ModelType.IFT,
|
339 |
+
'Writer/palmyra-base': ModelType.PT,
|
340 |
+
'MBZUAI/LaMini-GPT-1.5B': ModelType.IFT,
|
341 |
+
'MBZUAI/lamini-cerebras-111m': ModelType.IFT,
|
342 |
+
'MBZUAI/lamini-neo-1.3b': ModelType.IFT,
|
343 |
+
'MBZUAI/lamini-cerebras-1.3b': ModelType.IFT,
|
344 |
+
'MBZUAI/lamini-cerebras-256m': ModelType.IFT,
|
345 |
+
'MBZUAI/LaMini-GPT-124M': ModelType.IFT,
|
346 |
+
'MBZUAI/lamini-neo-125m': ModelType.IFT,
|
347 |
+
'TehVenom/DiffMerge-DollyGPT-Pygmalion': ModelType.FT,
|
348 |
+
'TehVenom/PPO_Shygmalion-6b': ModelType.FT,
|
349 |
+
'TehVenom/Dolly_Shygmalion-6b-Dev_V8P2': ModelType.FT,
|
350 |
+
'TehVenom/Pygmalion_AlpacaLora-7b': ModelType.FT,
|
351 |
+
'TehVenom/PPO_Pygway-V8p4_Dev-6b': ModelType.FT,
|
352 |
+
'TehVenom/Dolly_Malion-6b': ModelType.FT,
|
353 |
+
'TehVenom/PPO_Shygmalion-V8p4_Dev-6b': ModelType.FT,
|
354 |
+
'TehVenom/ChanMalion': ModelType.FT,
|
355 |
+
'TehVenom/GPT-J-Pyg_PPO-6B': ModelType.IFT,
|
356 |
+
'TehVenom/Pygmalion-13b-Merged': ModelType.FT,
|
357 |
+
'TehVenom/Metharme-13b-Merged': ModelType.IFT,
|
358 |
+
'TehVenom/Dolly_Shygmalion-6b': ModelType.FT,
|
359 |
+
'TehVenom/GPT-J-Pyg_PPO-6B-Dev-V8p4': ModelType.IFT,
|
360 |
+
'georgesung/llama2_7b_chat_uncensored': ModelType.FT,
|
361 |
+
'vicgalle/gpt2-alpaca': ModelType.IFT,
|
362 |
+
'vicgalle/alpaca-7b': ModelType.FT,
|
363 |
+
'vicgalle/gpt2-alpaca-gpt4': ModelType.IFT,
|
364 |
+
'facebook/opt-350m': ModelType.PT,
|
365 |
+
'facebook/opt-125m': ModelType.PT,
|
366 |
+
'facebook/xglm-4.5B': ModelType.PT,
|
367 |
+
'facebook/opt-2.7b': ModelType.PT,
|
368 |
+
'facebook/opt-6.7b': ModelType.PT,
|
369 |
+
'facebook/galactica-30b': ModelType.PT,
|
370 |
+
'facebook/opt-13b': ModelType.PT,
|
371 |
+
'facebook/opt-66b': ModelType.PT,
|
372 |
+
'facebook/xglm-7.5B': ModelType.PT,
|
373 |
+
'facebook/xglm-564M': ModelType.PT,
|
374 |
+
'facebook/opt-30b': ModelType.PT,
|
375 |
+
'golaxy/gogpt-7b': ModelType.FT,
|
376 |
+
'golaxy/gogpt2-7b': ModelType.FT,
|
377 |
+
'golaxy/gogpt-7b-bloom': ModelType.FT,
|
378 |
+
'golaxy/gogpt-3b-bloom': ModelType.FT,
|
379 |
+
'psmathur/orca_mini_v2_7b': ModelType.IFT,
|
380 |
+
'psmathur/orca_mini_7b': ModelType.IFT,
|
381 |
+
'psmathur/orca_mini_3b': ModelType.IFT,
|
382 |
+
'psmathur/orca_mini_v2_13b': ModelType.IFT,
|
383 |
+
'gpt2-xl': ModelType.PT,
|
384 |
+
'lxe/Cerebras-GPT-2.7B-Alpaca-SP': ModelType.FT,
|
385 |
+
'Monero/Manticore-13b-Chat-Pyg-Guanaco': ModelType.FT,
|
386 |
+
'Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b': ModelType.IFT,
|
387 |
+
'Monero/WizardLM-13b-OpenAssistant-Uncensored': ModelType.IFT,
|
388 |
+
'Monero/WizardLM-30B-Uncensored-Guanaco-SuperCOT-30b': ModelType.IFT,
|
389 |
+
'jzjiao/opt-1.3b-rlhf': ModelType.FT,
|
390 |
+
'HuggingFaceH4/starchat-beta': ModelType.IFT,
|
391 |
+
'KnutJaegersberg/gpt-2-xl-EvolInstruct': ModelType.IFT,
|
392 |
+
'KnutJaegersberg/megatron-GPT-2-345m-EvolInstruct': ModelType.IFT,
|
393 |
+
'KnutJaegersberg/galactica-orca-wizardlm-1.3b': ModelType.IFT,
|
394 |
+
'openchat/openchat_8192': ModelType.IFT,
|
395 |
+
'openchat/openchat_v2': ModelType.IFT,
|
396 |
+
'openchat/openchat_v2_w': ModelType.IFT,
|
397 |
+
'ausboss/llama-13b-supercot': ModelType.IFT,
|
398 |
+
'ausboss/llama-30b-supercot': ModelType.IFT,
|
399 |
+
'Neko-Institute-of-Science/metharme-7b': ModelType.IFT,
|
400 |
+
'Neko-Institute-of-Science/pygmalion-7b': ModelType.FT,
|
401 |
+
'SebastianSchramm/Cerebras-GPT-111M-instruction': ModelType.IFT,
|
402 |
+
'victor123/WizardLM-13B-1.0': ModelType.IFT,
|
403 |
+
'OpenBuddy/openbuddy-openllama-13b-v7-fp16': ModelType.FT,
|
404 |
+
'OpenBuddy/openbuddy-llama2-13b-v8.1-fp16': ModelType.FT,
|
405 |
+
'OpenBuddyEA/openbuddy-llama-30b-v7.1-bf16': ModelType.FT,
|
406 |
+
'baichuan-inc/Baichuan-7B': ModelType.PT,
|
407 |
+
'tiiuae/falcon-40b-instruct': ModelType.IFT,
|
408 |
+
'tiiuae/falcon-40b': ModelType.PT,
|
409 |
+
'tiiuae/falcon-7b': ModelType.PT,
|
410 |
+
'YeungNLP/firefly-llama-13b': ModelType.FT,
|
411 |
+
'YeungNLP/firefly-llama-13b-v1.2': ModelType.FT,
|
412 |
+
'YeungNLP/firefly-llama2-13b': ModelType.FT,
|
413 |
+
'YeungNLP/firefly-ziya-13b': ModelType.FT,
|
414 |
+
'shaohang/Sparse0.5_OPT-1.3': ModelType.FT,
|
415 |
+
'xzuyn/Alpacino-SuperCOT-13B': ModelType.IFT,
|
416 |
+
'xzuyn/MedicWizard-7B': ModelType.FT,
|
417 |
+
'xDAN-AI/xDAN_13b_l2_lora': ModelType.FT,
|
418 |
+
'beomi/KoAlpaca-Polyglot-5.8B': ModelType.FT,
|
419 |
+
'beomi/llama-2-ko-7b': ModelType.IFT,
|
420 |
+
'Salesforce/codegen-6B-multi': ModelType.PT,
|
421 |
+
'Salesforce/codegen-16B-nl': ModelType.PT,
|
422 |
+
'Salesforce/codegen-6B-nl': ModelType.PT,
|
423 |
+
'ai-forever/rugpt3large_based_on_gpt2': ModelType.FT,
|
424 |
+
'gpt2-large': ModelType.PT,
|
425 |
+
'frank098/orca_mini_3b_juniper': ModelType.FT,
|
426 |
+
'frank098/WizardLM_13B_juniper': ModelType.FT,
|
427 |
+
'FPHam/Free_Sydney_13b_HF': ModelType.FT,
|
428 |
+
'huggingface/llama-13b': ModelType.PT,
|
429 |
+
'huggingface/llama-7b': ModelType.PT,
|
430 |
+
'huggingface/llama-65b': ModelType.PT,
|
431 |
+
'huggingface/llama-30b': ModelType.PT,
|
432 |
+
'Henk717/chronoboros-33B': ModelType.IFT,
|
433 |
+
'jondurbin/airoboros-13b-gpt4-1.4': ModelType.IFT,
|
434 |
+
'jondurbin/airoboros-7b': ModelType.IFT,
|
435 |
+
'jondurbin/airoboros-7b-gpt4': ModelType.IFT,
|
436 |
+
'jondurbin/airoboros-7b-gpt4-1.1': ModelType.IFT,
|
437 |
+
'jondurbin/airoboros-7b-gpt4-1.2': ModelType.IFT,
|
438 |
+
'jondurbin/airoboros-7b-gpt4-1.3': ModelType.IFT,
|
439 |
+
'jondurbin/airoboros-7b-gpt4-1.4': ModelType.IFT,
|
440 |
+
'jondurbin/airoboros-l2-7b-gpt4-1.4.1': ModelType.IFT,
|
441 |
+
'jondurbin/airoboros-l2-13b-gpt4-1.4.1': ModelType.IFT,
|
442 |
+
'jondurbin/airoboros-l2-70b-gpt4-1.4.1': ModelType.IFT,
|
443 |
+
'jondurbin/airoboros-13b': ModelType.IFT,
|
444 |
+
'jondurbin/airoboros-33b-gpt4-1.4': ModelType.IFT,
|
445 |
+
'jondurbin/airoboros-33b-gpt4-1.2': ModelType.IFT,
|
446 |
+
'jondurbin/airoboros-65b-gpt4-1.2': ModelType.IFT,
|
447 |
+
'ariellee/SuperPlatty-30B': ModelType.IFT,
|
448 |
+
'danielhanchen/open_llama_3b_600bt_preview': ModelType.FT,
|
449 |
+
'cerebras/Cerebras-GPT-256M': ModelType.PT,
|
450 |
+
'cerebras/Cerebras-GPT-1.3B': ModelType.PT,
|
451 |
+
'cerebras/Cerebras-GPT-13B': ModelType.PT,
|
452 |
+
'cerebras/Cerebras-GPT-2.7B': ModelType.PT,
|
453 |
+
'cerebras/Cerebras-GPT-111M': ModelType.PT,
|
454 |
+
'cerebras/Cerebras-GPT-6.7B': ModelType.PT,
|
455 |
+
'Yhyu13/oasst-rlhf-2-llama-30b-7k-steps-hf': ModelType.RL,
|
456 |
+
'Yhyu13/llama-30B-hf-openassitant': ModelType.FT,
|
457 |
+
'NousResearch/Nous-Hermes-Llama2-13b': ModelType.IFT,
|
458 |
+
'NousResearch/Nous-Hermes-llama-2-7b': ModelType.IFT,
|
459 |
+
'NousResearch/Redmond-Puffin-13B': ModelType.IFT,
|
460 |
+
'NousResearch/Nous-Hermes-13b': ModelType.IFT,
|
461 |
+
'project-baize/baize-v2-7b': ModelType.IFT,
|
462 |
+
'project-baize/baize-v2-13b': ModelType.IFT,
|
463 |
+
'LLMs/WizardLM-13B-V1.0': ModelType.FT,
|
464 |
+
'LLMs/AlpacaGPT4-7B-elina': ModelType.FT,
|
465 |
+
'wenge-research/yayi-7b': ModelType.FT,
|
466 |
+
'wenge-research/yayi-7b-llama2': ModelType.FT,
|
467 |
+
'wenge-research/yayi-13b-llama2': ModelType.FT,
|
468 |
+
'yhyhy3/open_llama_7b_v2_med_instruct': ModelType.IFT,
|
469 |
+
'llama-anon/instruct-13b': ModelType.IFT,
|
470 |
+
'huggingtweets/jerma985': ModelType.FT,
|
471 |
+
'huggingtweets/gladosystem': ModelType.FT,
|
472 |
+
'huggingtweets/bladeecity-jerma985': ModelType.FT,
|
473 |
+
'huggyllama/llama-13b': ModelType.PT,
|
474 |
+
'huggyllama/llama-65b': ModelType.PT,
|
475 |
+
'FabbriSimo01/Facebook_opt_1.3b_Quantized': ModelType.PT,
|
476 |
+
'upstage/Llama-2-70b-instruct': ModelType.IFT,
|
477 |
+
'upstage/Llama-2-70b-instruct-1024': ModelType.IFT,
|
478 |
+
'upstage/llama-65b-instruct': ModelType.IFT,
|
479 |
+
'upstage/llama-30b-instruct-2048': ModelType.IFT,
|
480 |
+
'upstage/llama-30b-instruct': ModelType.IFT,
|
481 |
+
'WizardLM/WizardLM-13B-1.0': ModelType.IFT,
|
482 |
+
'WizardLM/WizardLM-13B-V1.1': ModelType.IFT,
|
483 |
+
'WizardLM/WizardLM-13B-V1.2': ModelType.IFT,
|
484 |
+
'WizardLM/WizardLM-30B-V1.0': ModelType.IFT,
|
485 |
+
'WizardLM/WizardCoder-15B-V1.0': ModelType.IFT,
|
486 |
+
'gpt2': ModelType.PT,
|
487 |
+
'keyfan/vicuna-chinese-replication-v1.1': ModelType.IFT,
|
488 |
+
'nthngdy/pythia-owt2-70m-100k': ModelType.FT,
|
489 |
+
'nthngdy/pythia-owt2-70m-50k': ModelType.FT,
|
490 |
+
'quantumaikr/KoreanLM-hf': ModelType.FT,
|
491 |
+
'quantumaikr/open_llama_7b_hf': ModelType.FT,
|
492 |
+
'quantumaikr/QuantumLM-70B-hf': ModelType.IFT,
|
493 |
+
'MayaPH/FinOPT-Lincoln': ModelType.FT,
|
494 |
+
'MayaPH/FinOPT-Franklin': ModelType.FT,
|
495 |
+
'MayaPH/GodziLLa-30B': ModelType.IFT,
|
496 |
+
'MayaPH/GodziLLa-30B-plus': ModelType.IFT,
|
497 |
+
'MayaPH/FinOPT-Washington': ModelType.FT,
|
498 |
+
'ogimgio/gpt-neo-125m-neurallinguisticpioneers': ModelType.FT,
|
499 |
+
'layoric/llama-2-13b-code-alpaca': ModelType.FT,
|
500 |
+
'CobraMamba/mamba-gpt-3b': ModelType.FT,
|
501 |
+
'CobraMamba/mamba-gpt-3b-v2': ModelType.FT,
|
502 |
+
'CobraMamba/mamba-gpt-3b-v3': ModelType.FT,
|
503 |
+
'timdettmers/guanaco-33b-merged': ModelType.FT,
|
504 |
+
'elinas/chronos-33b': ModelType.IFT,
|
505 |
+
'heegyu/RedTulu-Uncensored-3B-0719': ModelType.IFT,
|
506 |
+
'heegyu/WizardVicuna-Uncensored-3B-0719': ModelType.IFT,
|
507 |
+
'heegyu/WizardVicuna-3B-0719': ModelType.IFT,
|
508 |
+
'meta-llama/Llama-2-7b-chat-hf': ModelType.RL,
|
509 |
+
'meta-llama/Llama-2-7b-hf': ModelType.PT,
|
510 |
+
'meta-llama/Llama-2-13b-chat-hf': ModelType.RL,
|
511 |
+
'meta-llama/Llama-2-13b-hf': ModelType.PT,
|
512 |
+
'meta-llama/Llama-2-70b-chat-hf': ModelType.RL,
|
513 |
+
'meta-llama/Llama-2-70b-hf': ModelType.PT,
|
514 |
+
'xhyi/PT_GPTNEO350_ATG': ModelType.FT,
|
515 |
+
'h2oai/h2ogpt-gm-oasst1-en-1024-20b': ModelType.FT,
|
516 |
+
'h2oai/h2ogpt-gm-oasst1-en-1024-open-llama-7b-preview-400bt': ModelType.FT,
|
517 |
+
'h2oai/h2ogpt-oig-oasst1-512-6_9b': ModelType.IFT,
|
518 |
+
'h2oai/h2ogpt-oasst1-512-12b': ModelType.IFT,
|
519 |
+
'h2oai/h2ogpt-oig-oasst1-256-6_9b': ModelType.IFT,
|
520 |
+
'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt': ModelType.FT,
|
521 |
+
'h2oai/h2ogpt-oasst1-512-20b': ModelType.IFT,
|
522 |
+
'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2': ModelType.FT,
|
523 |
+
'h2oai/h2ogpt-gm-oasst1-en-1024-12b': ModelType.FT,
|
524 |
+
'h2oai/h2ogpt-gm-oasst1-multilang-1024-20b': ModelType.FT,
|
525 |
+
'bofenghuang/vigogne-13b-instruct': ModelType.IFT,
|
526 |
+
'bofenghuang/vigogne-13b-chat': ModelType.FT,
|
527 |
+
'bofenghuang/vigogne-2-7b-instruct': ModelType.IFT,
|
528 |
+
'bofenghuang/vigogne-7b-instruct': ModelType.IFT,
|
529 |
+
'bofenghuang/vigogne-7b-chat': ModelType.FT,
|
530 |
+
'Vmware/open-llama-7b-v2-open-instruct': ModelType.IFT,
|
531 |
+
'VMware/open-llama-0.7T-7B-open-instruct-v1.1': ModelType.IFT,
|
532 |
+
'ewof/koishi-instruct-3b': ModelType.IFT,
|
533 |
+
'gywy/llama2-13b-chinese-v1': ModelType.FT,
|
534 |
+
'GOAT-AI/GOAT-7B-Community': ModelType.FT,
|
535 |
+
'psyche/kollama2-7b': ModelType.FT,
|
536 |
+
'TheTravellingEngineer/llama2-7b-hf-guanaco': ModelType.FT,
|
537 |
+
'beaugogh/pythia-1.4b-deduped-sharegpt': ModelType.FT,
|
538 |
+
'augtoma/qCammel-70-x': ModelType.IFT,
|
539 |
+
'Lajonbot/Llama-2-7b-chat-hf-instruct-pl-lora_unload': ModelType.IFT,
|
540 |
+
'anhnv125/pygmalion-6b-roleplay': ModelType.FT,
|
541 |
+
'64bits/LexPodLM-13B': ModelType.FT,
|
542 |
+
}
|
543 |
+
|
544 |
+
|
545 |
+
def model_type_from_str(type):
|
546 |
+
if "fine-tuned" in type or "🔶" in type:
|
547 |
+
return ModelType.FT
|
548 |
+
if "pretrained" in type or "🟢" in type:
|
549 |
+
return ModelType.PT
|
550 |
+
if "RL-tuned" in type or "🟦" in type:
|
551 |
+
return ModelType.RL
|
552 |
+
if "instruction-tuned" in type or "⭕" in type:
|
553 |
+
return ModelType.IFT
|
554 |
+
return ModelType.Unknown
|
555 |
+
|
556 |
+
|
557 |
+
def get_model_type(leaderboard_data: List[dict]):
|
558 |
+
for model_data in leaderboard_data:
|
559 |
+
request_files = os.path.join("eval-queue", model_data["model_name_for_query"] + "_eval_request_*" + ".json")
|
560 |
+
request_files = glob.glob(request_files)
|
561 |
+
|
562 |
+
request_file = ""
|
563 |
+
if len(request_files) == 1:
|
564 |
+
request_file = request_files[0]
|
565 |
+
elif len(request_files) > 1:
|
566 |
+
request_files = sorted(request_files, reverse=True)
|
567 |
+
for tmp_request_file in request_files:
|
568 |
+
with open(tmp_request_file, "r") as f:
|
569 |
+
req_content = json.load(f)
|
570 |
+
if req_content["status"] == "FINISHED" and req_content["precision"] == model_data["Precision"].split(".")[-1]:
|
571 |
+
request_file = tmp_request_file
|
572 |
+
|
573 |
+
if request_file == "":
|
574 |
+
model_data[AutoEvalColumn.model_type.name] = ""
|
575 |
+
model_data[AutoEvalColumn.model_type_symbol.name] = ""
|
576 |
+
continue
|
577 |
+
|
578 |
+
try:
|
579 |
+
with open(request_file, "r") as f:
|
580 |
+
request = json.load(f)
|
581 |
+
is_delta = request["weight_type"] != "Original"
|
582 |
+
except Exception:
|
583 |
+
is_delta = False
|
584 |
+
|
585 |
+
try:
|
586 |
+
with open(request_file, "r") as f:
|
587 |
+
request = json.load(f)
|
588 |
+
model_type = model_type_from_str(request["model_type"])
|
589 |
+
model_data[AutoEvalColumn.model_type.name] = model_type.value.name
|
590 |
+
model_data[AutoEvalColumn.model_type_symbol.name] = model_type.value.symbol + ("🔺" if is_delta else "")
|
591 |
+
except KeyError:
|
592 |
+
if model_data["model_name_for_query"] in TYPE_METADATA:
|
593 |
+
model_data[AutoEvalColumn.model_type.name] = TYPE_METADATA[model_data["model_name_for_query"]].value.name
|
594 |
+
model_data[AutoEvalColumn.model_type_symbol.name] = TYPE_METADATA[model_data["model_name_for_query"]].value.symbol + ("🔺" if is_delta else "")
|
595 |
+
else:
|
596 |
+
model_data[AutoEvalColumn.model_type.name] = ModelType.Unknown.value.name
|
597 |
+
model_data[AutoEvalColumn.model_type_symbol.name] = ModelType.Unknown.value.symbol
|
src/init.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from huggingface_hub import Repository
|
3 |
+
|
4 |
+
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
5 |
+
|
6 |
+
|
7 |
+
def get_all_requested_models(requested_models_dir):
|
8 |
+
depth = 1
|
9 |
+
file_names = []
|
10 |
+
|
11 |
+
for root, dirs, files in os.walk(requested_models_dir):
|
12 |
+
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
13 |
+
if current_depth == depth:
|
14 |
+
file_names.extend([os.path.join(root, file) for file in files])
|
15 |
+
|
16 |
+
return set([file_name.lower().split("eval-queue/")[1] for file_name in file_names])
|
17 |
+
|
18 |
+
def load_all_info_from_hub(QUEUE_REPO, RESULTS_REPO, QUEUE_PATH, RESULTS_PATH):
|
19 |
+
eval_queue_repo = None
|
20 |
+
eval_results_repo = None
|
21 |
+
requested_models = None
|
22 |
+
|
23 |
+
if H4_TOKEN:
|
24 |
+
print("Pulling evaluation requests and results.")
|
25 |
+
|
26 |
+
eval_queue_repo = Repository(
|
27 |
+
local_dir=QUEUE_PATH,
|
28 |
+
clone_from=QUEUE_REPO,
|
29 |
+
use_auth_token=H4_TOKEN,
|
30 |
+
repo_type="dataset",
|
31 |
+
)
|
32 |
+
eval_queue_repo.git_pull()
|
33 |
+
|
34 |
+
eval_results_repo = Repository(
|
35 |
+
local_dir=RESULTS_PATH,
|
36 |
+
clone_from=RESULTS_REPO,
|
37 |
+
use_auth_token=H4_TOKEN,
|
38 |
+
repo_type="dataset",
|
39 |
+
)
|
40 |
+
eval_results_repo.git_pull()
|
41 |
+
|
42 |
+
requested_models = get_all_requested_models("eval-queue")
|
43 |
+
else:
|
44 |
+
print("No HuggingFace token provided. Skipping evaluation requests and results.")
|
45 |
+
|
46 |
+
return eval_queue_repo, requested_models, eval_results_repo
|
47 |
+
|
48 |
+
|
49 |
+
#def load_results(model, benchmark, metric):
|
50 |
+
# file_path = os.path.join("autoevals", model, f"{model}-eval_{benchmark}.json")
|
51 |
+
# if not os.path.exists(file_path):
|
52 |
+
# return 0.0, None
|
53 |
+
|
54 |
+
# with open(file_path) as fp:
|
55 |
+
# data = json.load(fp)
|
56 |
+
# accs = np.array([v[metric] for k, v in data["results"].items()])
|
57 |
+
# mean_acc = np.mean(accs)
|
58 |
+
# return mean_acc, data["config"]["model_args"]
|
src/utils_display.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
|
3 |
+
# These classes are for user facing column names, to avoid having to change them
|
4 |
+
# all around the code when a modif is needed
|
5 |
+
@dataclass
|
6 |
+
class ColumnContent:
|
7 |
+
name: str
|
8 |
+
type: str
|
9 |
+
displayed_by_default: bool
|
10 |
+
hidden: bool = False
|
11 |
+
|
12 |
+
def fields(raw_class):
|
13 |
+
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
14 |
+
|
15 |
+
@dataclass(frozen=True)
|
16 |
+
class AutoEvalColumn: # Auto evals column
|
17 |
+
model_type_symbol = ColumnContent("T", "str", True)
|
18 |
+
model = ColumnContent("Model", "markdown", True)
|
19 |
+
average = ColumnContent("Average ⬆️", "number", True)
|
20 |
+
arc = ColumnContent("ARC", "number", True)
|
21 |
+
hellaswag = ColumnContent("HellaSwag", "number", True)
|
22 |
+
mmlu = ColumnContent("MMLU", "number", True)
|
23 |
+
truthfulqa = ColumnContent("TruthfulQA", "number", True)
|
24 |
+
model_type = ColumnContent("Type", "str", False)
|
25 |
+
precision = ColumnContent("Precision", "str", False) #, True)
|
26 |
+
license = ColumnContent("Hub License", "str", False)
|
27 |
+
params = ColumnContent("#Params (B)", "number", False)
|
28 |
+
likes = ColumnContent("Hub ❤️", "number", False)
|
29 |
+
revision = ColumnContent("Model sha", "str", False, False)
|
30 |
+
dummy = ColumnContent("model_name_for_query", "str", True) # dummy col to implement search bar (hidden by custom CSS)
|
31 |
+
|
32 |
+
@dataclass(frozen=True)
|
33 |
+
class EloEvalColumn: # Elo evals column
|
34 |
+
model = ColumnContent("Model", "markdown", True)
|
35 |
+
gpt4 = ColumnContent("GPT-4 (all)", "number", True)
|
36 |
+
human_all = ColumnContent("Human (all)", "number", True)
|
37 |
+
human_instruct = ColumnContent("Human (instruct)", "number", True)
|
38 |
+
human_code_instruct = ColumnContent("Human (code-instruct)", "number", True)
|
39 |
+
|
40 |
+
|
41 |
+
@dataclass(frozen=True)
|
42 |
+
class EvalQueueColumn: # Queue column
|
43 |
+
model = ColumnContent("model", "markdown", True)
|
44 |
+
revision = ColumnContent("revision", "str", True)
|
45 |
+
private = ColumnContent("private", "bool", True)
|
46 |
+
precision = ColumnContent("precision", "str", True)
|
47 |
+
weight_type = ColumnContent("weight_type", "str", "Original")
|
48 |
+
status = ColumnContent("status", "str", True)
|
49 |
+
|
50 |
+
LLAMAS = ["huggingface/llama-7b", "huggingface/llama-13b", "huggingface/llama-30b", "huggingface/llama-65b"]
|
51 |
+
|
52 |
+
|
53 |
+
KOALA_LINK = "https://huggingface.co/TheBloke/koala-13B-HF"
|
54 |
+
VICUNA_LINK = "https://huggingface.co/lmsys/vicuna-13b-delta-v1.1"
|
55 |
+
OASST_LINK = "https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
|
56 |
+
DOLLY_LINK = "https://huggingface.co/databricks/dolly-v2-12b"
|
57 |
+
MODEL_PAGE = "https://huggingface.co/models"
|
58 |
+
LLAMA_LINK = "https://ai.facebook.com/blog/large-language-model-llama-meta-ai/"
|
59 |
+
VICUNA_LINK = "https://huggingface.co/CarperAI/stable-vicuna-13b-delta"
|
60 |
+
ALPACA_LINK = "https://crfm.stanford.edu/2023/03/13/alpaca.html"
|
61 |
+
|
62 |
+
|
63 |
+
def model_hyperlink(link, model_name):
|
64 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
65 |
+
|
66 |
+
|
67 |
+
def make_clickable_model(model_name):
|
68 |
+
link = f"https://huggingface.co/{model_name}"
|
69 |
+
|
70 |
+
if model_name in LLAMAS:
|
71 |
+
link = LLAMA_LINK
|
72 |
+
model_name = model_name.split("/")[1]
|
73 |
+
elif model_name == "HuggingFaceH4/stable-vicuna-13b-2904":
|
74 |
+
link = VICUNA_LINK
|
75 |
+
model_name = "stable-vicuna-13b"
|
76 |
+
elif model_name == "HuggingFaceH4/llama-7b-ift-alpaca":
|
77 |
+
link = ALPACA_LINK
|
78 |
+
model_name = "alpaca-13b"
|
79 |
+
if model_name == "dolly-12b":
|
80 |
+
link = DOLLY_LINK
|
81 |
+
elif model_name == "vicuna-13b":
|
82 |
+
link = VICUNA_LINK
|
83 |
+
elif model_name == "koala-13b":
|
84 |
+
link = KOALA_LINK
|
85 |
+
elif model_name == "oasst-12b":
|
86 |
+
link = OASST_LINK
|
87 |
+
#else:
|
88 |
+
# link = MODEL_PAGE
|
89 |
+
|
90 |
+
return model_hyperlink(link, model_name)
|
91 |
+
|
92 |
+
def styled_error(error):
|
93 |
+
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
94 |
+
|
95 |
+
def styled_warning(warn):
|
96 |
+
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
|
97 |
+
|
98 |
+
def styled_message(message):
|
99 |
+
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
|