|
import numpy as np |
|
import torch |
|
from torch import nn |
|
import streamlit as st |
|
import os |
|
|
|
from PIL import Image |
|
from io import BytesIO |
|
import transformers |
|
from transformers import VisionEncoderDecoderModel, VisionEncoderDecoderConfig, DonutProcessor, DonutImageProcessor, AutoTokenizer |
|
|
|
from logits_ngrams import NoRepeatNGramLogitsProcessor, get_table_token_ids |
|
|
|
def run_prediction(sample, model, processor, mode): |
|
|
|
skip_tokens = get_table_token_ids(processor) |
|
no_repeat_ngram_size = 15 |
|
|
|
if mode == "OCR": |
|
prompt = "<s><s_pretraining>" |
|
else: |
|
prompt = "<s><s_hierarchical>" |
|
|
|
|
|
print("prompt:", prompt) |
|
print("no_repeat_ngram_size:", no_repeat_ngram_size) |
|
|
|
pixel_values = processor(np.array( |
|
sample, |
|
np.float32, |
|
), return_tensors="pt").pixel_values |
|
|
|
transformers.set_seed(42) |
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
pixel_values.to(device), |
|
decoder_input_ids=processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids.to(device), |
|
logits_processor=[NoRepeatNGramLogitsProcessor(no_repeat_ngram_size, skip_tokens)], |
|
do_sample=True, |
|
top_p=0.92, |
|
top_k=5, |
|
no_repeat_ngram_size=10, |
|
num_beams=3, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
) |
|
|
|
|
|
prediction = processor.batch_decode(outputs)[0] |
|
print(prediction) |
|
|
|
return prediction |
|
|
|
|
|
logo = Image.open("./rsz_unstructured_logo.png") |
|
st.image(logo) |
|
|
|
st.markdown(''' |
|
### Chipper |
|
Chipper is an OCR-free Document Understanding Transformer. It was pre-trained with over 1M documents from public sources and fine-tuned on a large range of documents. |
|
|
|
At [Unstructured.io](https://github.com/Unstructured-IO/unstructured) we are on a mission to build custom preprocessing pipelines for labeling, training, or production ML-ready pipelines. |
|
Come and join us in our public repos and contribute! Each of your contributions and feedback holds great value and is very significant to the community. |
|
''') |
|
|
|
image_upload = None |
|
photo = None |
|
with st.sidebar: |
|
|
|
uploaded_file = st.file_uploader("Upload a document") |
|
if uploaded_file is not None: |
|
|
|
image_bytes_data = uploaded_file.getvalue() |
|
image_upload = Image.open(BytesIO(image_bytes_data)) |
|
|
|
mode = st.selectbox('Mode', ('OCR', 'Element annotation'), index=1) |
|
|
|
if image_upload: |
|
image = image_upload |
|
else: |
|
image = Image.open(f"./document.png") |
|
|
|
st.image(image, caption='Your target document') |
|
|
|
with st.spinner(f'Processing the document ...'): |
|
pre_trained_model = "unstructuredio/chipper-fast-fine-tuning" |
|
processor = DonutProcessor.from_pretrained(pre_trained_model, token=os.environ['HF_TOKEN']) |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
if 'model' in st.session_state: |
|
model = st.session_state['model'] |
|
else: |
|
model = VisionEncoderDecoderModel.from_pretrained(pre_trained_model, token=os.environ['HF_TOKEN']) |
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
lm_head_file = hf_hub_download( |
|
repo_id=pre_trained_model, filename="lm_head.pth", token=os.environ['HF_TOKEN'] |
|
) |
|
|
|
rank = 128 |
|
model.decoder.lm_head = nn.Sequential( |
|
nn.Linear(model.decoder.lm_head.weight.shape[1], rank, bias=False), |
|
nn.Linear(rank, rank, bias=False), |
|
nn.Linear(rank, model.decoder.lm_head.weight.shape[0], bias=True), |
|
) |
|
|
|
model.decoder.lm_head.load_state_dict(torch.load(lm_head_file)) |
|
|
|
|
|
model.eval() |
|
model.to(device) |
|
st.session_state['model'] = model |
|
|
|
st.info(f'Parsing document') |
|
parsed_info = run_prediction(image.convert("RGB"), model, processor, mode) |
|
st.text(f'\nDocument:') |
|
st.text_area('Output text', value=parsed_info, height=800) |
|
|