Spaces:
Sleeping
Sleeping
# gradio app | |
import torch | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
import gradio as gr | |
from moviepy.editor import VideoFileClip | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model_id = "distil-whisper/distil-large-v3" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch_dtype, use_safetensors=True | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=128, | |
chunk_length_s=25, | |
batch_size=16, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
def extract_audio_from_video(video_path, audio_output_path): | |
"""Extracts audio from a video and saves it to an MP3 file.""" | |
try: | |
video_clip = VideoFileClip(video_path) | |
audio_clip = video_clip.audio | |
audio_clip.write_audiofile(audio_output_path) | |
print(f"Audio extracted successfully and saved to: {audio_output_path}") | |
return audio_output_path | |
except Exception as e: | |
print(f"Error extracting audio: {e}") | |
return None | |
def speech_to_text(input_file): | |
try: | |
if input_file.name.endswith((".mp4", ".avi", ".mov")): | |
audio_file_path = extract_audio_from_video(input_file, "temp_audio.mp3") | |
if audio_file_path: | |
result = pipe(audio_file_path) | |
return result["text"] | |
else: | |
result = pipe(input_file) | |
return result["text"] | |
except Exception as e: | |
return f"Error: {str(e)}" | |
iface = gr.Interface(fn=speech_to_text, inputs="file", outputs="text", title="Audio/Video-to-Text") | |
if __name__ == "__main__": | |
iface.launch(debug=True) |