upload .py files at root dir
Browse files- regionally_controlable_sampling.py +189 -0
- test_edlora.py +110 -0
- train_edlora.py +198 -0
- weight_fusion.py +699 -0
regionally_controlable_sampling.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import hashlib
|
3 |
+
import json
|
4 |
+
import os.path
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from diffusers import DPMSolverMultistepScheduler
|
8 |
+
from diffusers.models import T2IAdapter
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
from mixofshow.pipelines.pipeline_regionally_t2iadapter import RegionallyT2IAdapterPipeline
|
12 |
+
|
13 |
+
|
14 |
+
def sample_image(pipe,
|
15 |
+
input_prompt,
|
16 |
+
input_neg_prompt=None,
|
17 |
+
generator=None,
|
18 |
+
num_inference_steps=50,
|
19 |
+
guidance_scale=7.5,
|
20 |
+
sketch_adaptor_weight=1.0,
|
21 |
+
region_sketch_adaptor_weight='',
|
22 |
+
keypose_adaptor_weight=1.0,
|
23 |
+
region_keypose_adaptor_weight='',
|
24 |
+
**extra_kargs
|
25 |
+
):
|
26 |
+
|
27 |
+
keypose_condition = extra_kargs.pop('keypose_condition')
|
28 |
+
if keypose_condition is not None:
|
29 |
+
keypose_adapter_input = [keypose_condition] * len(input_prompt)
|
30 |
+
else:
|
31 |
+
keypose_adapter_input = None
|
32 |
+
|
33 |
+
sketch_condition = extra_kargs.pop('sketch_condition')
|
34 |
+
if sketch_condition is not None:
|
35 |
+
sketch_adapter_input = [sketch_condition] * len(input_prompt)
|
36 |
+
else:
|
37 |
+
sketch_adapter_input = None
|
38 |
+
|
39 |
+
images = pipe(
|
40 |
+
prompt=input_prompt,
|
41 |
+
negative_prompt=input_neg_prompt,
|
42 |
+
keypose_adapter_input=keypose_adapter_input,
|
43 |
+
keypose_adaptor_weight=keypose_adaptor_weight,
|
44 |
+
region_keypose_adaptor_weight=region_keypose_adaptor_weight,
|
45 |
+
sketch_adapter_input=sketch_adapter_input,
|
46 |
+
sketch_adaptor_weight=sketch_adaptor_weight,
|
47 |
+
region_sketch_adaptor_weight=region_sketch_adaptor_weight,
|
48 |
+
generator=generator,
|
49 |
+
guidance_scale=guidance_scale,
|
50 |
+
num_inference_steps=num_inference_steps,
|
51 |
+
**extra_kargs).images
|
52 |
+
return images
|
53 |
+
|
54 |
+
|
55 |
+
def build_model(pretrained_model, device):
|
56 |
+
pipe = RegionallyT2IAdapterPipeline.from_pretrained(pretrained_model, torch_dtype=torch.float16).to(device)
|
57 |
+
assert os.path.exists(os.path.join(pretrained_model, 'new_concept_cfg.json'))
|
58 |
+
with open(os.path.join(pretrained_model, 'new_concept_cfg.json'), 'r') as json_file:
|
59 |
+
new_concept_cfg = json.load(json_file)
|
60 |
+
pipe.set_new_concept_cfg(new_concept_cfg)
|
61 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained(pretrained_model, subfolder='scheduler')
|
62 |
+
pipe.keypose_adapter = T2IAdapter.from_pretrained('TencentARC/t2iadapter_openpose_sd14v1', torch_dtype=torch.float16).to(device)
|
63 |
+
pipe.sketch_adapter = T2IAdapter.from_pretrained('TencentARC/t2iadapter_sketch_sd14v1', torch_dtype=torch.float16).to(device)
|
64 |
+
return pipe
|
65 |
+
|
66 |
+
|
67 |
+
def prepare_text(prompt, region_prompts, height, width):
|
68 |
+
'''
|
69 |
+
Args:
|
70 |
+
prompt_entity: [subject1]-*-[attribute1]-*-[Location1]|[subject2]-*-[attribute2]-*-[Location2]|[global text]
|
71 |
+
Returns:
|
72 |
+
full_prompt: subject1, attribute1 and subject2, attribute2, global text
|
73 |
+
context_prompt: subject1 and subject2, global text
|
74 |
+
entity_collection: [(subject1, attribute1), Location1]
|
75 |
+
'''
|
76 |
+
region_collection = []
|
77 |
+
|
78 |
+
regions = region_prompts.split('|')
|
79 |
+
|
80 |
+
for region in regions:
|
81 |
+
if region == '':
|
82 |
+
break
|
83 |
+
prompt_region, neg_prompt_region, pos = region.split('-*-')
|
84 |
+
prompt_region = prompt_region.replace('[', '').replace(']', '')
|
85 |
+
neg_prompt_region = neg_prompt_region.replace('[', '').replace(']', '')
|
86 |
+
pos = eval(pos)
|
87 |
+
if len(pos) == 0:
|
88 |
+
pos = [0, 0, 1, 1]
|
89 |
+
else:
|
90 |
+
pos[0], pos[2] = pos[0] / height, pos[2] / height
|
91 |
+
pos[1], pos[3] = pos[1] / width, pos[3] / width
|
92 |
+
|
93 |
+
region_collection.append((prompt_region, neg_prompt_region, pos))
|
94 |
+
return (prompt, region_collection)
|
95 |
+
|
96 |
+
|
97 |
+
def parse_args():
|
98 |
+
parser = argparse.ArgumentParser('', add_help=False)
|
99 |
+
parser.add_argument('--pretrained_model', default='experiments/composed_edlora/anythingv4/hina+kario+tezuka+mitsuha+son_anythingv4/combined_model_base', type=str)
|
100 |
+
parser.add_argument('--sketch_condition', default=None, type=str)
|
101 |
+
parser.add_argument('--sketch_adaptor_weight', default=1.0, type=float)
|
102 |
+
parser.add_argument('--region_sketch_adaptor_weight', default='', type=str)
|
103 |
+
parser.add_argument('--keypose_condition', default=None, type=str)
|
104 |
+
parser.add_argument('--keypose_adaptor_weight', default=1.0, type=float)
|
105 |
+
parser.add_argument('--region_keypose_adaptor_weight', default='', type=str)
|
106 |
+
parser.add_argument('--save_dir', default=None, type=str)
|
107 |
+
parser.add_argument('--prompt', default='photo of a toy', type=str)
|
108 |
+
parser.add_argument('--negative_prompt', default='', type=str)
|
109 |
+
parser.add_argument('--prompt_rewrite', default='', type=str)
|
110 |
+
parser.add_argument('--seed', default=16141, type=int)
|
111 |
+
parser.add_argument('--suffix', default='', type=str)
|
112 |
+
return parser.parse_args()
|
113 |
+
|
114 |
+
|
115 |
+
if __name__ == '__main__':
|
116 |
+
args = parse_args()
|
117 |
+
|
118 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
119 |
+
pipe = build_model(args.pretrained_model, device)
|
120 |
+
|
121 |
+
if args.sketch_condition is not None and os.path.exists(args.sketch_condition):
|
122 |
+
sketch_condition = Image.open(args.sketch_condition).convert('L')
|
123 |
+
width_sketch, height_sketch = sketch_condition.size
|
124 |
+
print('use sketch condition')
|
125 |
+
else:
|
126 |
+
sketch_condition, width_sketch, height_sketch = None, 0, 0
|
127 |
+
print('skip sketch condition')
|
128 |
+
|
129 |
+
if args.keypose_condition is not None and os.path.exists(args.keypose_condition):
|
130 |
+
keypose_condition = Image.open(args.keypose_condition).convert('RGB')
|
131 |
+
width_pose, height_pose = keypose_condition.size
|
132 |
+
print('use pose condition')
|
133 |
+
else:
|
134 |
+
keypose_condition, width_pose, height_pose = None, 0, 0
|
135 |
+
print('skip pose condition')
|
136 |
+
|
137 |
+
if width_sketch != 0 and width_pose != 0:
|
138 |
+
assert width_sketch == width_pose and height_sketch == height_pose, 'conditions should be same size'
|
139 |
+
width, height = max(width_pose, width_sketch), max(height_pose, height_sketch)
|
140 |
+
|
141 |
+
kwargs = {
|
142 |
+
'sketch_condition': sketch_condition,
|
143 |
+
'keypose_condition': keypose_condition,
|
144 |
+
'height': height,
|
145 |
+
'width': width,
|
146 |
+
}
|
147 |
+
|
148 |
+
prompts = [args.prompt]
|
149 |
+
prompts_rewrite = [args.prompt_rewrite]
|
150 |
+
input_prompt = [prepare_text(p, p_w, height, width) for p, p_w in zip(prompts, prompts_rewrite)]
|
151 |
+
save_prompt = input_prompt[0][0]
|
152 |
+
|
153 |
+
image = sample_image(
|
154 |
+
pipe,
|
155 |
+
input_prompt=input_prompt,
|
156 |
+
input_neg_prompt=[args.negative_prompt] * len(input_prompt),
|
157 |
+
generator=torch.Generator(device).manual_seed(args.seed),
|
158 |
+
sketch_adaptor_weight=args.sketch_adaptor_weight,
|
159 |
+
region_sketch_adaptor_weight=args.region_sketch_adaptor_weight,
|
160 |
+
keypose_adaptor_weight=args.keypose_adaptor_weight,
|
161 |
+
region_keypose_adaptor_weight=args.region_keypose_adaptor_weight,
|
162 |
+
**kwargs)
|
163 |
+
|
164 |
+
print(f'save to: {args.save_dir}')
|
165 |
+
|
166 |
+
configs = [
|
167 |
+
f'pretrained_model: {args.pretrained_model}\n',
|
168 |
+
f'context_prompt: {args.prompt}\n', f'neg_context_prompt: {args.negative_prompt}\n',
|
169 |
+
f'sketch_condition: {args.sketch_condition}\n', f'sketch_adaptor_weight: {args.sketch_adaptor_weight}\n',
|
170 |
+
f'region_sketch_adaptor_weight: {args.region_sketch_adaptor_weight}\n',
|
171 |
+
f'keypose_condition: {args.keypose_condition}\n', f'keypose_adaptor_weight: {args.keypose_adaptor_weight}\n',
|
172 |
+
f'region_keypose_adaptor_weight: {args.region_keypose_adaptor_weight}\n', f'random seed: {args.seed}\n',
|
173 |
+
f'prompt_rewrite: {args.prompt_rewrite}\n'
|
174 |
+
]
|
175 |
+
hash_code = hashlib.sha256(''.join(configs).encode('utf-8')).hexdigest()[:8]
|
176 |
+
|
177 |
+
save_prompt = save_prompt.replace(' ', '_')
|
178 |
+
# save_name = f'{save_prompt}---{args.suffix}---{hash_code}.png'
|
179 |
+
# save_dir = os.path.join(args.save_dir, f'seed_{args.seed}')
|
180 |
+
save_name = f'{save_prompt}---{args.suffix}(seed{args.seed})---{hash_code}.png'
|
181 |
+
save_dir = args.save_dir
|
182 |
+
save_path = os.path.join(save_dir, save_name)
|
183 |
+
save_config_path = os.path.join(save_dir, save_name.replace('.png', '.txt'))
|
184 |
+
|
185 |
+
os.makedirs(save_dir, exist_ok=True)
|
186 |
+
image[0].save(os.path.join(save_dir, save_name))
|
187 |
+
|
188 |
+
with open(save_config_path, 'w') as fw:
|
189 |
+
fw.writelines(configs)
|
test_edlora.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import os.path as osp
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.utils.checkpoint
|
7 |
+
from accelerate import Accelerator
|
8 |
+
from accelerate.logging import get_logger
|
9 |
+
from accelerate.utils import set_seed
|
10 |
+
from diffusers import DPMSolverMultistepScheduler
|
11 |
+
from diffusers.utils import check_min_version
|
12 |
+
from omegaconf import OmegaConf
|
13 |
+
from tqdm import tqdm
|
14 |
+
|
15 |
+
from mixofshow.data.prompt_dataset import PromptDataset
|
16 |
+
from mixofshow.pipelines.pipeline_edlora import EDLoRAPipeline, StableDiffusionPipeline
|
17 |
+
from mixofshow.utils.convert_edlora_to_diffusers import convert_edlora
|
18 |
+
from mixofshow.utils.util import NEGATIVE_PROMPT, compose_visualize, dict2str, pil_imwrite, set_path_logger
|
19 |
+
|
20 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
21 |
+
check_min_version('0.18.2')
|
22 |
+
|
23 |
+
|
24 |
+
def visual_validation(accelerator, pipe, dataloader, current_iter, opt):
|
25 |
+
dataset_name = dataloader.dataset.opt['name']
|
26 |
+
pipe.unet.eval()
|
27 |
+
pipe.text_encoder.eval()
|
28 |
+
|
29 |
+
for idx, val_data in enumerate(tqdm(dataloader)):
|
30 |
+
output = pipe(
|
31 |
+
prompt=val_data['prompts'],
|
32 |
+
latents=val_data['latents'].to(dtype=torch.float16),
|
33 |
+
negative_prompt=[NEGATIVE_PROMPT] * len(val_data['prompts']),
|
34 |
+
num_inference_steps=opt['val']['sample'].get('num_inference_steps', 50),
|
35 |
+
guidance_scale=opt['val']['sample'].get('guidance_scale', 7.5),
|
36 |
+
).images
|
37 |
+
|
38 |
+
for img, prompt, indice in zip(output, val_data['prompts'], val_data['indices']):
|
39 |
+
img_name = '{prompt}---G_{guidance_scale}_S_{steps}---{indice}'.format(
|
40 |
+
prompt=prompt.replace(' ', '_'),
|
41 |
+
guidance_scale=opt['val']['sample'].get('guidance_scale', 7.5),
|
42 |
+
steps=opt['val']['sample'].get('num_inference_steps', 50),
|
43 |
+
indice=indice)
|
44 |
+
|
45 |
+
save_img_path = osp.join(opt['path']['visualization'], dataset_name, f'{current_iter}', f'{img_name}---{current_iter}.png')
|
46 |
+
|
47 |
+
pil_imwrite(img, save_img_path)
|
48 |
+
# tentative for out of GPU memory
|
49 |
+
del output
|
50 |
+
torch.cuda.empty_cache()
|
51 |
+
|
52 |
+
# Save the lora layers, final eval
|
53 |
+
accelerator.wait_for_everyone()
|
54 |
+
|
55 |
+
if opt['val'].get('compose_visualize'):
|
56 |
+
if accelerator.is_main_process:
|
57 |
+
compose_visualize(os.path.dirname(save_img_path))
|
58 |
+
|
59 |
+
|
60 |
+
def test(root_path, args):
|
61 |
+
|
62 |
+
# load config
|
63 |
+
opt = OmegaConf.to_container(OmegaConf.load(args.opt), resolve=True)
|
64 |
+
|
65 |
+
# set accelerator, mix-precision set in the environment by "accelerate config"
|
66 |
+
accelerator = Accelerator(mixed_precision=opt['mixed_precision'])
|
67 |
+
|
68 |
+
# set experiment dir
|
69 |
+
with accelerator.main_process_first():
|
70 |
+
set_path_logger(accelerator, root_path, args.opt, opt, is_train=False)
|
71 |
+
|
72 |
+
# get logger
|
73 |
+
logger = get_logger('mixofshow', log_level='INFO')
|
74 |
+
logger.info(accelerator.state, main_process_only=True)
|
75 |
+
|
76 |
+
logger.info(dict2str(opt))
|
77 |
+
|
78 |
+
# If passed along, set the training seed now.
|
79 |
+
if opt.get('manual_seed') is not None:
|
80 |
+
set_seed(opt['manual_seed'])
|
81 |
+
|
82 |
+
# Get the training dataset
|
83 |
+
valset_cfg = opt['datasets']['val_vis']
|
84 |
+
val_dataset = PromptDataset(valset_cfg)
|
85 |
+
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=valset_cfg['batch_size_per_gpu'], shuffle=False)
|
86 |
+
|
87 |
+
enable_edlora = opt['models']['enable_edlora']
|
88 |
+
|
89 |
+
for lora_alpha in opt['val']['alpha_list']:
|
90 |
+
pipeclass = EDLoRAPipeline if enable_edlora else StableDiffusionPipeline
|
91 |
+
pipe = pipeclass.from_pretrained(opt['models']['pretrained_path'],
|
92 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(opt['models']['pretrained_path'], subfolder='scheduler'),
|
93 |
+
torch_dtype=torch.float16).to('cuda')
|
94 |
+
pipe, new_concept_cfg = convert_edlora(pipe, torch.load(opt['path']['lora_path']), enable_edlora=enable_edlora, alpha=lora_alpha)
|
95 |
+
pipe.set_new_concept_cfg(new_concept_cfg)
|
96 |
+
# visualize embedding + LoRA weight shift
|
97 |
+
logger.info(f'Start validation sample lora({lora_alpha}):')
|
98 |
+
|
99 |
+
lora_type = 'edlora' if enable_edlora else 'lora'
|
100 |
+
visual_validation(accelerator, pipe, val_dataloader, f'validation_{lora_type}_{lora_alpha}', opt)
|
101 |
+
del pipe
|
102 |
+
|
103 |
+
|
104 |
+
if __name__ == '__main__':
|
105 |
+
parser = argparse.ArgumentParser()
|
106 |
+
parser.add_argument('-opt', type=str, default='options/test/EDLoRA/EDLoRA_hina_Anyv4_B4_Iter1K.yml')
|
107 |
+
args = parser.parse_args()
|
108 |
+
|
109 |
+
root_path = osp.abspath(osp.join(__file__, osp.pardir))
|
110 |
+
test(root_path, args)
|
train_edlora.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import copy
|
3 |
+
import os
|
4 |
+
import os.path as osp
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.utils.checkpoint
|
8 |
+
from accelerate import Accelerator
|
9 |
+
from accelerate.logging import get_logger
|
10 |
+
from accelerate.utils import set_seed
|
11 |
+
from diffusers import DPMSolverMultistepScheduler
|
12 |
+
from diffusers.optimization import get_scheduler
|
13 |
+
from diffusers.utils import check_min_version
|
14 |
+
from omegaconf import OmegaConf
|
15 |
+
|
16 |
+
from mixofshow.data.lora_dataset import LoraDataset
|
17 |
+
from mixofshow.data.prompt_dataset import PromptDataset
|
18 |
+
from mixofshow.pipelines.pipeline_edlora import EDLoRAPipeline, StableDiffusionPipeline
|
19 |
+
from mixofshow.pipelines.trainer_edlora import EDLoRATrainer
|
20 |
+
from mixofshow.utils.convert_edlora_to_diffusers import convert_edlora
|
21 |
+
from mixofshow.utils.util import MessageLogger, dict2str, reduce_loss_dict, set_path_logger
|
22 |
+
from test_edlora import visual_validation
|
23 |
+
|
24 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
25 |
+
check_min_version('0.18.2')
|
26 |
+
|
27 |
+
|
28 |
+
def train(root_path, args):
|
29 |
+
|
30 |
+
# load config
|
31 |
+
opt = OmegaConf.to_container(OmegaConf.load(args.opt), resolve=True)
|
32 |
+
|
33 |
+
# set accelerator, mix-precision set in the environment by "accelerate config"
|
34 |
+
accelerator = Accelerator(mixed_precision=opt['mixed_precision'], gradient_accumulation_steps=opt['gradient_accumulation_steps'])
|
35 |
+
|
36 |
+
# set experiment dir
|
37 |
+
with accelerator.main_process_first():
|
38 |
+
set_path_logger(accelerator, root_path, args.opt, opt, is_train=True)
|
39 |
+
|
40 |
+
# get logger
|
41 |
+
logger = get_logger('mixofshow', log_level='INFO')
|
42 |
+
logger.info(accelerator.state, main_process_only=True)
|
43 |
+
|
44 |
+
logger.info(dict2str(opt))
|
45 |
+
|
46 |
+
# If passed along, set the training seed now.
|
47 |
+
if opt.get('manual_seed') is not None:
|
48 |
+
set_seed(opt['manual_seed'])
|
49 |
+
|
50 |
+
# Load model
|
51 |
+
EDLoRA_trainer = EDLoRATrainer(**opt['models'])
|
52 |
+
|
53 |
+
# set optimizer
|
54 |
+
train_opt = opt['train']
|
55 |
+
optim_type = train_opt['optim_g'].pop('type')
|
56 |
+
assert optim_type == 'AdamW', 'only support AdamW now'
|
57 |
+
optimizer = torch.optim.AdamW(EDLoRA_trainer.get_params_to_optimize(), **train_opt['optim_g'])
|
58 |
+
|
59 |
+
# Get the training dataset
|
60 |
+
trainset_cfg = opt['datasets']['train']
|
61 |
+
train_dataset = LoraDataset(trainset_cfg)
|
62 |
+
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=trainset_cfg['batch_size_per_gpu'], shuffle=True, drop_last=True)
|
63 |
+
|
64 |
+
# Get the training dataset
|
65 |
+
valset_cfg = opt['datasets']['val_vis']
|
66 |
+
val_dataset = PromptDataset(valset_cfg)
|
67 |
+
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=valset_cfg['batch_size_per_gpu'], shuffle=False)
|
68 |
+
|
69 |
+
# Prepare everything with our `accelerator`.
|
70 |
+
EDLoRA_trainer, optimizer, train_dataloader, val_dataloader = accelerator.prepare(EDLoRA_trainer, optimizer, train_dataloader, val_dataloader)
|
71 |
+
|
72 |
+
# Train!
|
73 |
+
total_batch_size = opt['datasets']['train']['batch_size_per_gpu'] * accelerator.num_processes * opt['gradient_accumulation_steps']
|
74 |
+
total_iter = len(train_dataset) / total_batch_size
|
75 |
+
opt['train']['total_iter'] = total_iter
|
76 |
+
|
77 |
+
logger.info('***** Running training *****')
|
78 |
+
logger.info(f' Num examples = {len(train_dataset)}')
|
79 |
+
logger.info(f" Instantaneous batch size per device = {opt['datasets']['train']['batch_size_per_gpu']}")
|
80 |
+
logger.info(f' Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}')
|
81 |
+
logger.info(f' Total optimization steps = {total_iter}')
|
82 |
+
global_step = 0
|
83 |
+
|
84 |
+
# Scheduler
|
85 |
+
lr_scheduler = get_scheduler(
|
86 |
+
'linear',
|
87 |
+
optimizer=optimizer,
|
88 |
+
num_warmup_steps=0,
|
89 |
+
num_training_steps=total_iter * opt['gradient_accumulation_steps'],
|
90 |
+
)
|
91 |
+
|
92 |
+
def make_data_yielder(dataloader):
|
93 |
+
while True:
|
94 |
+
for batch in dataloader:
|
95 |
+
yield batch
|
96 |
+
accelerator.wait_for_everyone()
|
97 |
+
|
98 |
+
train_data_yielder = make_data_yielder(train_dataloader)
|
99 |
+
|
100 |
+
msg_logger = MessageLogger(opt, global_step)
|
101 |
+
stop_emb_update = False
|
102 |
+
|
103 |
+
original_embedding = copy.deepcopy(accelerator.unwrap_model(EDLoRA_trainer).text_encoder.get_input_embeddings().weight)
|
104 |
+
|
105 |
+
while global_step < opt['train']['total_iter']:
|
106 |
+
with accelerator.accumulate(EDLoRA_trainer):
|
107 |
+
|
108 |
+
accelerator.unwrap_model(EDLoRA_trainer).unet.train()
|
109 |
+
accelerator.unwrap_model(EDLoRA_trainer).text_encoder.train()
|
110 |
+
loss_dict = {}
|
111 |
+
|
112 |
+
batch = next(train_data_yielder)
|
113 |
+
|
114 |
+
if 'masks' in batch:
|
115 |
+
masks = batch['masks']
|
116 |
+
else:
|
117 |
+
masks = batch['img_masks']
|
118 |
+
|
119 |
+
loss = EDLoRA_trainer(batch['images'], batch['prompts'], masks, batch['img_masks'])
|
120 |
+
loss_dict['loss'] = loss
|
121 |
+
|
122 |
+
# get fix embedding and learn embedding
|
123 |
+
index_no_updates = torch.arange(len(accelerator.unwrap_model(EDLoRA_trainer).tokenizer)) != -1
|
124 |
+
if not stop_emb_update:
|
125 |
+
for token_id in accelerator.unwrap_model(EDLoRA_trainer).get_all_concept_token_ids():
|
126 |
+
index_no_updates[token_id] = False
|
127 |
+
|
128 |
+
accelerator.backward(loss)
|
129 |
+
optimizer.step()
|
130 |
+
lr_scheduler.step()
|
131 |
+
optimizer.zero_grad()
|
132 |
+
|
133 |
+
if accelerator.sync_gradients:
|
134 |
+
# set no update token to origin
|
135 |
+
token_embeds = accelerator.unwrap_model(EDLoRA_trainer).text_encoder.get_input_embeddings().weight
|
136 |
+
token_embeds.data[index_no_updates, :] = original_embedding.data[index_no_updates, :]
|
137 |
+
|
138 |
+
token_embeds = accelerator.unwrap_model(EDLoRA_trainer).text_encoder.get_input_embeddings().weight
|
139 |
+
concept_token_ids = accelerator.unwrap_model(EDLoRA_trainer).get_all_concept_token_ids()
|
140 |
+
loss_dict['Norm_mean'] = token_embeds[concept_token_ids].norm(dim=-1).mean()
|
141 |
+
if stop_emb_update is False and float(loss_dict['Norm_mean']) >= train_opt.get('emb_norm_threshold', 5.5e-1):
|
142 |
+
stop_emb_update = True
|
143 |
+
original_embedding = copy.deepcopy(accelerator.unwrap_model(EDLoRA_trainer).text_encoder.get_input_embeddings().weight)
|
144 |
+
|
145 |
+
log_dict = reduce_loss_dict(accelerator, loss_dict)
|
146 |
+
|
147 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
148 |
+
if accelerator.sync_gradients:
|
149 |
+
global_step += 1
|
150 |
+
|
151 |
+
if global_step % opt['logger']['print_freq'] == 0:
|
152 |
+
log_vars = {'iter': global_step}
|
153 |
+
log_vars.update({'lrs': lr_scheduler.get_last_lr()})
|
154 |
+
log_vars.update(log_dict)
|
155 |
+
msg_logger(log_vars)
|
156 |
+
|
157 |
+
if global_step % opt['logger']['save_checkpoint_freq'] == 0:
|
158 |
+
save_and_validation(accelerator, opt, EDLoRA_trainer, val_dataloader, global_step, logger)
|
159 |
+
|
160 |
+
# Save the lora layers, final eval
|
161 |
+
accelerator.wait_for_everyone()
|
162 |
+
save_and_validation(accelerator, opt, EDLoRA_trainer, val_dataloader, 'latest', logger)
|
163 |
+
|
164 |
+
|
165 |
+
def save_and_validation(accelerator, opt, EDLoRA_trainer, val_dataloader, global_step, logger):
|
166 |
+
enable_edlora = opt['models']['enable_edlora']
|
167 |
+
lora_type = 'edlora' if enable_edlora else 'lora'
|
168 |
+
save_path = os.path.join(opt['path']['models'], f'{lora_type}_model-{global_step}.pth')
|
169 |
+
|
170 |
+
if accelerator.is_main_process:
|
171 |
+
accelerator.save({'params': accelerator.unwrap_model(EDLoRA_trainer).delta_state_dict()}, save_path)
|
172 |
+
logger.info(f'Save state to {save_path}')
|
173 |
+
|
174 |
+
accelerator.wait_for_everyone()
|
175 |
+
|
176 |
+
if opt['val']['val_during_save']:
|
177 |
+
logger.info(f'Start validation {save_path}:')
|
178 |
+
for lora_alpha in opt['val']['alpha_list']:
|
179 |
+
pipeclass = EDLoRAPipeline if enable_edlora else StableDiffusionPipeline
|
180 |
+
|
181 |
+
pipe = pipeclass.from_pretrained(opt['models']['pretrained_path'],
|
182 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(opt['models']['pretrained_path'], subfolder='scheduler'),
|
183 |
+
torch_dtype=torch.float16).to('cuda')
|
184 |
+
pipe, new_concept_cfg = convert_edlora(pipe, torch.load(save_path), enable_edlora=enable_edlora, alpha=lora_alpha)
|
185 |
+
pipe.set_new_concept_cfg(new_concept_cfg)
|
186 |
+
pipe.set_progress_bar_config(disable=True)
|
187 |
+
visual_validation(accelerator, pipe, val_dataloader, f'Iters-{global_step}_Alpha-{lora_alpha}', opt)
|
188 |
+
|
189 |
+
del pipe
|
190 |
+
|
191 |
+
|
192 |
+
if __name__ == '__main__':
|
193 |
+
parser = argparse.ArgumentParser()
|
194 |
+
parser.add_argument('-opt', type=str, default='options/train/EDLoRA/EDLoRA_hina_Anyv4_B4_Iter1K.yml')
|
195 |
+
args = parser.parse_args()
|
196 |
+
|
197 |
+
root_path = osp.abspath(osp.join(__file__, osp.pardir))
|
198 |
+
train(root_path, args)
|
weight_fusion.py
ADDED
@@ -0,0 +1,699 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import copy
|
3 |
+
import itertools
|
4 |
+
import json
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torch.optim as optim
|
12 |
+
from diffusers import DDPMScheduler, DPMSolverMultistepScheduler, StableDiffusionPipeline
|
13 |
+
from tqdm import tqdm
|
14 |
+
|
15 |
+
from mixofshow.models.edlora import revise_edlora_unet_attention_forward
|
16 |
+
from mixofshow.pipelines.pipeline_edlora import bind_concept_prompt
|
17 |
+
from mixofshow.utils.util import set_logger
|
18 |
+
|
19 |
+
TEMPLATE_SIMPLE = 'photo of a {}'
|
20 |
+
|
21 |
+
|
22 |
+
def chunk_compute_mse(K_target, V_target, W, device, chunk_size=5000):
|
23 |
+
num_chunks = (K_target.size(0) + chunk_size - 1) // chunk_size
|
24 |
+
|
25 |
+
loss = 0
|
26 |
+
|
27 |
+
for i in range(num_chunks):
|
28 |
+
# Extract the current chunk
|
29 |
+
start_idx = i * chunk_size
|
30 |
+
end_idx = min(start_idx + chunk_size, K_target.size(0))
|
31 |
+
loss += F.mse_loss(
|
32 |
+
F.linear(K_target[start_idx:end_idx].to(device), W),
|
33 |
+
V_target[start_idx:end_idx].to(device)) * (end_idx - start_idx)
|
34 |
+
loss /= K_target.size(0)
|
35 |
+
return loss
|
36 |
+
|
37 |
+
|
38 |
+
def update_quasi_newton(K_target, V_target, W, iters, device):
|
39 |
+
'''
|
40 |
+
Args:
|
41 |
+
K: torch.Tensor, size [n_samples, n_features]
|
42 |
+
V: torch.Tensor, size [n_samples, n_targets]
|
43 |
+
K_target: torch.Tensor, size [n_constraints, n_features]
|
44 |
+
V_target: torch.Tensor, size [n_constraints, n_targets]
|
45 |
+
W: torch.Tensor, size [n_targets, n_features]
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
Wnew: torch.Tensor, size [n_targets, n_features]
|
49 |
+
'''
|
50 |
+
|
51 |
+
W = W.detach()
|
52 |
+
V_target = V_target.detach()
|
53 |
+
K_target = K_target.detach()
|
54 |
+
|
55 |
+
W.requires_grad = True
|
56 |
+
K_target.requires_grad = False
|
57 |
+
V_target.requires_grad = False
|
58 |
+
|
59 |
+
best_loss = np.Inf
|
60 |
+
best_W = None
|
61 |
+
|
62 |
+
def closure():
|
63 |
+
nonlocal best_W, best_loss
|
64 |
+
optimizer.zero_grad()
|
65 |
+
|
66 |
+
if len(W.shape) == 4:
|
67 |
+
loss = F.mse_loss(F.conv2d(K_target.to(device), W),
|
68 |
+
V_target.to(device))
|
69 |
+
else:
|
70 |
+
loss = chunk_compute_mse(K_target, V_target, W, device)
|
71 |
+
|
72 |
+
if loss < best_loss:
|
73 |
+
best_loss = loss
|
74 |
+
best_W = W.clone().cpu()
|
75 |
+
loss.backward()
|
76 |
+
return loss
|
77 |
+
|
78 |
+
optimizer = optim.LBFGS([W],
|
79 |
+
lr=1,
|
80 |
+
max_iter=iters,
|
81 |
+
history_size=25,
|
82 |
+
line_search_fn='strong_wolfe',
|
83 |
+
tolerance_grad=1e-16,
|
84 |
+
tolerance_change=1e-16)
|
85 |
+
optimizer.step(closure)
|
86 |
+
|
87 |
+
with torch.no_grad():
|
88 |
+
if len(W.shape) == 4:
|
89 |
+
loss = torch.norm(
|
90 |
+
F.conv2d(K_target.to(torch.float32), best_W.to(torch.float32)) - V_target.to(torch.float32), 2, dim=1)
|
91 |
+
else:
|
92 |
+
loss = torch.norm(
|
93 |
+
F.linear(K_target.to(torch.float32), best_W.to(torch.float32)) - V_target.to(torch.float32), 2, dim=1)
|
94 |
+
|
95 |
+
logging.info('new_concept loss: %e' % loss.mean().item())
|
96 |
+
return best_W
|
97 |
+
|
98 |
+
|
99 |
+
def merge_lora_into_weight(original_state_dict, lora_state_dict, modification_layer_names, model_type, alpha, device):
|
100 |
+
def get_lora_down_name(original_layer_name):
|
101 |
+
if model_type == 'text_encoder':
|
102 |
+
lora_down_name = original_layer_name.replace('q_proj.weight', 'q_proj.lora_down.weight') \
|
103 |
+
.replace('k_proj.weight', 'k_proj.lora_down.weight') \
|
104 |
+
.replace('v_proj.weight', 'v_proj.lora_down.weight') \
|
105 |
+
.replace('out_proj.weight', 'out_proj.lora_down.weight') \
|
106 |
+
.replace('fc1.weight', 'fc1.lora_down.weight') \
|
107 |
+
.replace('fc2.weight', 'fc2.lora_down.weight')
|
108 |
+
else:
|
109 |
+
lora_down_name = k.replace('to_q.weight', 'to_q.lora_down.weight') \
|
110 |
+
.replace('to_k.weight', 'to_k.lora_down.weight') \
|
111 |
+
.replace('to_v.weight', 'to_v.lora_down.weight') \
|
112 |
+
.replace('to_out.0.weight', 'to_out.0.lora_down.weight') \
|
113 |
+
.replace('ff.net.0.proj.weight', 'ff.net.0.proj.lora_down.weight') \
|
114 |
+
.replace('ff.net.2.weight', 'ff.net.2.lora_down.weight') \
|
115 |
+
.replace('proj_out.weight', 'proj_out.lora_down.weight') \
|
116 |
+
.replace('proj_in.weight', 'proj_in.lora_down.weight')
|
117 |
+
|
118 |
+
return lora_down_name
|
119 |
+
|
120 |
+
assert model_type in ['unet', 'text_encoder']
|
121 |
+
new_state_dict = copy.deepcopy(original_state_dict)
|
122 |
+
load_cnt = 0
|
123 |
+
|
124 |
+
for k in modification_layer_names:
|
125 |
+
lora_down_name = get_lora_down_name(k)
|
126 |
+
lora_up_name = lora_down_name.replace('lora_down', 'lora_up')
|
127 |
+
|
128 |
+
if lora_up_name in lora_state_dict:
|
129 |
+
load_cnt += 1
|
130 |
+
original_params = new_state_dict[k]
|
131 |
+
lora_down_params = lora_state_dict[lora_down_name].to(device)
|
132 |
+
lora_up_params = lora_state_dict[lora_up_name].to(device)
|
133 |
+
if len(original_params.shape) == 4:
|
134 |
+
lora_param = lora_up_params.squeeze(
|
135 |
+
) @ lora_down_params.squeeze()
|
136 |
+
lora_param = lora_param.unsqueeze(-1).unsqueeze(-1)
|
137 |
+
else:
|
138 |
+
lora_param = lora_up_params @ lora_down_params
|
139 |
+
merge_params = original_params + alpha * lora_param
|
140 |
+
new_state_dict[k] = merge_params
|
141 |
+
|
142 |
+
logging.info(f'load {load_cnt} LoRAs of {model_type}')
|
143 |
+
return new_state_dict
|
144 |
+
|
145 |
+
|
146 |
+
module_io_recoder = {}
|
147 |
+
record_feature = False # remember to set record feature
|
148 |
+
|
149 |
+
|
150 |
+
def get_hooker(module_name):
|
151 |
+
def hook(module, feature_in, feature_out):
|
152 |
+
if module_name not in module_io_recoder:
|
153 |
+
module_io_recoder[module_name] = {'input': [], 'output': []}
|
154 |
+
if record_feature:
|
155 |
+
module_io_recoder[module_name]['input'].append(feature_in[0].cpu())
|
156 |
+
if module.bias is not None:
|
157 |
+
if len(feature_out.shape) == 4:
|
158 |
+
bias = module.bias.unsqueeze(-1).unsqueeze(-1)
|
159 |
+
else:
|
160 |
+
bias = module.bias
|
161 |
+
module_io_recoder[module_name]['output'].append(
|
162 |
+
(feature_out - bias).cpu()) # remove bias
|
163 |
+
else:
|
164 |
+
module_io_recoder[module_name]['output'].append(
|
165 |
+
feature_out.cpu())
|
166 |
+
|
167 |
+
return hook
|
168 |
+
|
169 |
+
|
170 |
+
def init_stable_diffusion(pretrained_model_path, device):
|
171 |
+
# step1: get w0 parameters
|
172 |
+
model_id = pretrained_model_path
|
173 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device)
|
174 |
+
|
175 |
+
train_scheduler = DDPMScheduler.from_pretrained(model_id, subfolder='scheduler')
|
176 |
+
test_scheduler = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder='scheduler')
|
177 |
+
pipe.safety_checker = None
|
178 |
+
pipe.scheduler = test_scheduler
|
179 |
+
return pipe, train_scheduler, test_scheduler
|
180 |
+
|
181 |
+
|
182 |
+
@torch.no_grad()
|
183 |
+
def get_text_feature(prompts, tokenizer, text_encoder, device, return_type='category_embedding'):
|
184 |
+
text_features = []
|
185 |
+
|
186 |
+
if return_type == 'category_embedding':
|
187 |
+
for text in prompts:
|
188 |
+
tokens = tokenizer(
|
189 |
+
text,
|
190 |
+
truncation=True,
|
191 |
+
max_length=tokenizer.model_max_length,
|
192 |
+
return_length=True,
|
193 |
+
return_overflowing_tokens=False,
|
194 |
+
padding='do_not_pad',
|
195 |
+
).input_ids
|
196 |
+
|
197 |
+
new_token_position = torch.where(torch.tensor(tokens) >= 49407)[0]
|
198 |
+
# >40497 not include end token | >=40497 include end token
|
199 |
+
concept_feature = text_encoder(
|
200 |
+
torch.LongTensor(tokens).reshape(
|
201 |
+
1, -1).to(device))[0][:,
|
202 |
+
new_token_position].reshape(-1, 768)
|
203 |
+
text_features.append(concept_feature)
|
204 |
+
return torch.cat(text_features, 0).float()
|
205 |
+
elif return_type == 'full_embedding':
|
206 |
+
text_input = tokenizer(prompts,
|
207 |
+
padding='max_length',
|
208 |
+
max_length=tokenizer.model_max_length,
|
209 |
+
truncation=True,
|
210 |
+
return_tensors='pt')
|
211 |
+
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
|
212 |
+
return text_embeddings
|
213 |
+
else:
|
214 |
+
raise NotImplementedError
|
215 |
+
|
216 |
+
|
217 |
+
def merge_new_concepts_(embedding_list, concept_list, tokenizer, text_encoder):
|
218 |
+
def add_new_concept(concept_name, embedding):
|
219 |
+
new_token_names = [
|
220 |
+
f'<new{start_idx + layer_id}>'
|
221 |
+
for layer_id in range(NUM_CROSS_ATTENTION_LAYERS)
|
222 |
+
]
|
223 |
+
num_added_tokens = tokenizer.add_tokens(new_token_names)
|
224 |
+
assert num_added_tokens == NUM_CROSS_ATTENTION_LAYERS
|
225 |
+
new_token_ids = [
|
226 |
+
tokenizer.convert_tokens_to_ids(token_name)
|
227 |
+
for token_name in new_token_names
|
228 |
+
]
|
229 |
+
|
230 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
231 |
+
token_embeds = text_encoder.get_input_embeddings().weight.data
|
232 |
+
|
233 |
+
token_embeds[new_token_ids] = token_embeds[new_token_ids].copy_(
|
234 |
+
embedding[concept_name])
|
235 |
+
|
236 |
+
embedding_features.update({concept_name: embedding[concept_name]})
|
237 |
+
logging.info(
|
238 |
+
f'concept {concept_name} is bind with token_id: [{min(new_token_ids)}, {max(new_token_ids)}]'
|
239 |
+
)
|
240 |
+
|
241 |
+
return start_idx + NUM_CROSS_ATTENTION_LAYERS, new_token_ids, new_token_names
|
242 |
+
|
243 |
+
embedding_features = {}
|
244 |
+
new_concept_cfg = {}
|
245 |
+
|
246 |
+
start_idx = 0
|
247 |
+
|
248 |
+
NUM_CROSS_ATTENTION_LAYERS = 16
|
249 |
+
|
250 |
+
for idx, (embedding,
|
251 |
+
concept) in enumerate(zip(embedding_list, concept_list)):
|
252 |
+
concept_names = concept['concept_name'].split(' ')
|
253 |
+
|
254 |
+
for concept_name in concept_names:
|
255 |
+
if not concept_name.startswith('<'):
|
256 |
+
continue
|
257 |
+
else:
|
258 |
+
assert concept_name in embedding, 'check the config, the provide concept name is not in the lora model'
|
259 |
+
start_idx, new_token_ids, new_token_names = add_new_concept(
|
260 |
+
concept_name, embedding)
|
261 |
+
new_concept_cfg.update({
|
262 |
+
concept_name: {
|
263 |
+
'concept_token_ids': new_token_ids,
|
264 |
+
'concept_token_names': new_token_names
|
265 |
+
}
|
266 |
+
})
|
267 |
+
return embedding_features, new_concept_cfg
|
268 |
+
|
269 |
+
|
270 |
+
def parse_new_concepts(concept_cfg):
|
271 |
+
with open(concept_cfg, 'r') as f:
|
272 |
+
concept_list = json.load(f)
|
273 |
+
|
274 |
+
model_paths = [concept['lora_path'] for concept in concept_list]
|
275 |
+
|
276 |
+
embedding_list = []
|
277 |
+
text_encoder_list = []
|
278 |
+
unet_crosskv_list = []
|
279 |
+
unet_spatial_attn_list = []
|
280 |
+
|
281 |
+
for model_path in model_paths:
|
282 |
+
model = torch.load(model_path)['params']
|
283 |
+
|
284 |
+
if 'new_concept_embedding' in model and len(
|
285 |
+
model['new_concept_embedding']) != 0:
|
286 |
+
embedding_list.append(model['new_concept_embedding'])
|
287 |
+
else:
|
288 |
+
embedding_list.append(None)
|
289 |
+
|
290 |
+
if 'text_encoder' in model and len(model['text_encoder']) != 0:
|
291 |
+
text_encoder_list.append(model['text_encoder'])
|
292 |
+
else:
|
293 |
+
text_encoder_list.append(None)
|
294 |
+
|
295 |
+
if 'unet' in model and len(model['unet']) != 0:
|
296 |
+
crosskv_matches = ['attn2.to_k.lora', 'attn2.to_v.lora']
|
297 |
+
crosskv_dict = {
|
298 |
+
k: v
|
299 |
+
for k, v in model['unet'].items()
|
300 |
+
if any([x in k for x in crosskv_matches])
|
301 |
+
}
|
302 |
+
|
303 |
+
if len(crosskv_dict) != 0:
|
304 |
+
unet_crosskv_list.append(crosskv_dict)
|
305 |
+
else:
|
306 |
+
unet_crosskv_list.append(None)
|
307 |
+
|
308 |
+
spatial_attn_dict = {
|
309 |
+
k: v
|
310 |
+
for k, v in model['unet'].items()
|
311 |
+
if all([x not in k for x in crosskv_matches])
|
312 |
+
}
|
313 |
+
|
314 |
+
if len(spatial_attn_dict) != 0:
|
315 |
+
unet_spatial_attn_list.append(spatial_attn_dict)
|
316 |
+
else:
|
317 |
+
unet_spatial_attn_list.append(None)
|
318 |
+
else:
|
319 |
+
unet_crosskv_list.append(None)
|
320 |
+
unet_spatial_attn_list.append(None)
|
321 |
+
|
322 |
+
return embedding_list, text_encoder_list, unet_crosskv_list, unet_spatial_attn_list, concept_list
|
323 |
+
|
324 |
+
|
325 |
+
def merge_kv_in_cross_attention(concept_list, optimize_iters, new_concept_cfg,
|
326 |
+
tokenizer, text_encoder, unet,
|
327 |
+
unet_crosskv_list, device):
|
328 |
+
# crosskv attention layer names
|
329 |
+
matches = ['attn2.to_k', 'attn2.to_v']
|
330 |
+
|
331 |
+
cross_attention_idx = -1
|
332 |
+
cross_kv_layer_names = []
|
333 |
+
|
334 |
+
# the crosskv name should match the order down->mid->up, and record its layer id
|
335 |
+
for name, _ in unet.down_blocks.named_parameters():
|
336 |
+
if any([x in name for x in matches]):
|
337 |
+
if 'to_k' in name:
|
338 |
+
cross_attention_idx += 1
|
339 |
+
cross_kv_layer_names.append(
|
340 |
+
(cross_attention_idx, 'down_blocks.' + name))
|
341 |
+
cross_kv_layer_names.append(
|
342 |
+
(cross_attention_idx,
|
343 |
+
'down_blocks.' + name.replace('to_k', 'to_v')))
|
344 |
+
else:
|
345 |
+
pass
|
346 |
+
|
347 |
+
for name, _ in unet.mid_block.named_parameters():
|
348 |
+
if any([x in name for x in matches]):
|
349 |
+
if 'to_k' in name:
|
350 |
+
cross_attention_idx += 1
|
351 |
+
cross_kv_layer_names.append(
|
352 |
+
(cross_attention_idx, 'mid_block.' + name))
|
353 |
+
cross_kv_layer_names.append(
|
354 |
+
(cross_attention_idx,
|
355 |
+
'mid_block.' + name.replace('to_k', 'to_v')))
|
356 |
+
else:
|
357 |
+
pass
|
358 |
+
|
359 |
+
for name, _ in unet.up_blocks.named_parameters():
|
360 |
+
if any([x in name for x in matches]):
|
361 |
+
if 'to_k' in name:
|
362 |
+
cross_attention_idx += 1
|
363 |
+
cross_kv_layer_names.append(
|
364 |
+
(cross_attention_idx, 'up_blocks.' + name))
|
365 |
+
cross_kv_layer_names.append(
|
366 |
+
(cross_attention_idx,
|
367 |
+
'up_blocks.' + name.replace('to_k', 'to_v')))
|
368 |
+
else:
|
369 |
+
pass
|
370 |
+
|
371 |
+
logging.info(
|
372 |
+
f'Unet have {len(cross_kv_layer_names)} linear layer (related to text feature) need to optimize'
|
373 |
+
)
|
374 |
+
|
375 |
+
original_unet_state_dict = unet.state_dict() # original state dict
|
376 |
+
concept_weights_dict = {}
|
377 |
+
|
378 |
+
# step 1: construct prompts for new concept -> extract input/target features
|
379 |
+
for concept, tuned_state_dict in zip(concept_list, unet_crosskv_list):
|
380 |
+
|
381 |
+
for layer_idx, layer_name in cross_kv_layer_names:
|
382 |
+
|
383 |
+
# merge params
|
384 |
+
original_params = original_unet_state_dict[layer_name]
|
385 |
+
|
386 |
+
# hard coded here: in unet, self/crosskv attention disable bias parameter
|
387 |
+
lora_down_name = layer_name.replace('to_k.weight', 'to_k.lora_down.weight').replace('to_v.weight', 'to_v.lora_down.weight')
|
388 |
+
lora_up_name = lora_down_name.replace('lora_down', 'lora_up')
|
389 |
+
|
390 |
+
alpha = concept['unet_alpha']
|
391 |
+
|
392 |
+
lora_down_params = tuned_state_dict[lora_down_name].to(device)
|
393 |
+
lora_up_params = tuned_state_dict[lora_up_name].to(device)
|
394 |
+
|
395 |
+
merge_params = original_params + alpha * lora_up_params @ lora_down_params
|
396 |
+
|
397 |
+
if layer_name not in concept_weights_dict:
|
398 |
+
concept_weights_dict[layer_name] = []
|
399 |
+
|
400 |
+
concept_weights_dict[layer_name].append(merge_params)
|
401 |
+
|
402 |
+
|
403 |
+
new_kv_weights = {}
|
404 |
+
# step 3: begin update model
|
405 |
+
for idx, (layer_idx, layer_name) in enumerate(cross_kv_layer_names):
|
406 |
+
Wnew = torch.stack(concept_weights_dict[layer_name])
|
407 |
+
Wnew = torch.mean(Wnew, dim = 0)
|
408 |
+
new_kv_weights[layer_name] = Wnew
|
409 |
+
|
410 |
+
return new_kv_weights
|
411 |
+
|
412 |
+
|
413 |
+
def merge_text_encoder(concept_list, optimize_iters, new_concept_cfg,
|
414 |
+
tokenizer, text_encoder, text_encoder_list, device):
|
415 |
+
|
416 |
+
LoRA_keys = []
|
417 |
+
for textenc_lora in text_encoder_list:
|
418 |
+
LoRA_keys += list(textenc_lora.keys())
|
419 |
+
LoRA_keys = set([
|
420 |
+
key.replace('.lora_down', '').replace('.lora_up', '')
|
421 |
+
for key in LoRA_keys
|
422 |
+
])
|
423 |
+
text_encoder_layer_names = LoRA_keys
|
424 |
+
|
425 |
+
candidate_module_name = [
|
426 |
+
'q_proj', 'k_proj', 'v_proj', 'out_proj', 'fc1', 'fc2'
|
427 |
+
]
|
428 |
+
candidate_module_name = [
|
429 |
+
name for name in candidate_module_name
|
430 |
+
if any([name in key for key in LoRA_keys])
|
431 |
+
]
|
432 |
+
|
433 |
+
logging.info(f'text_encoder have {len(text_encoder_layer_names)} linear layer need to optimize')
|
434 |
+
|
435 |
+
global module_io_recoder, record_feature
|
436 |
+
hooker_handlers = []
|
437 |
+
for name, module in text_encoder.named_modules():
|
438 |
+
if any([item in name for item in candidate_module_name]):
|
439 |
+
hooker_handlers.append(module.register_forward_hook(hook=get_hooker(name)))
|
440 |
+
|
441 |
+
logging.info(f'add {len(hooker_handlers)} hooker to text_encoder')
|
442 |
+
|
443 |
+
original_state_dict = copy.deepcopy(text_encoder.state_dict()) # original state dict
|
444 |
+
|
445 |
+
new_concept_input_dict = {}
|
446 |
+
new_concept_output_dict = {}
|
447 |
+
concept_weights_dict = {}
|
448 |
+
|
449 |
+
for concept, lora_state_dict in zip(concept_list, text_encoder_list):
|
450 |
+
merged_state_dict = merge_lora_into_weight(
|
451 |
+
original_state_dict,
|
452 |
+
lora_state_dict,
|
453 |
+
text_encoder_layer_names,
|
454 |
+
model_type='text_encoder',
|
455 |
+
alpha=concept['text_encoder_alpha'],
|
456 |
+
device=device)
|
457 |
+
text_encoder.load_state_dict(merged_state_dict) # load merged parameters
|
458 |
+
# we use different model to compute new concept feature
|
459 |
+
for layer_name in text_encoder_layer_names:
|
460 |
+
if layer_name not in concept_weights_dict:
|
461 |
+
concept_weights_dict[layer_name] = []
|
462 |
+
concept_weights_dict[layer_name].append(merged_state_dict[layer_name])
|
463 |
+
|
464 |
+
new_text_encoder_weights = {}
|
465 |
+
# step 3: begin update model
|
466 |
+
for idx, layer_name in enumerate(text_encoder_layer_names):
|
467 |
+
Wnew = torch.stack(concept_weights_dict[layer_name])
|
468 |
+
Wnew = torch.mean(Wnew, dim = 0)
|
469 |
+
new_text_encoder_weights[layer_name] = Wnew
|
470 |
+
|
471 |
+
logging.info(f'remove {len(hooker_handlers)} hooker from text_encoder')
|
472 |
+
|
473 |
+
# remove forward hooker
|
474 |
+
for hook_handle in hooker_handlers:
|
475 |
+
hook_handle.remove()
|
476 |
+
|
477 |
+
return new_text_encoder_weights
|
478 |
+
|
479 |
+
|
480 |
+
@torch.no_grad()
|
481 |
+
def decode_to_latents(concept_prompt, new_concept_cfg, tokenizer, text_encoder,
|
482 |
+
unet, test_scheduler, num_inference_steps, device,
|
483 |
+
record_nums, batch_size):
|
484 |
+
|
485 |
+
concept_prompt = bind_concept_prompt([concept_prompt], new_concept_cfg)
|
486 |
+
text_embeddings = get_text_feature(
|
487 |
+
concept_prompt,
|
488 |
+
tokenizer,
|
489 |
+
text_encoder,
|
490 |
+
device,
|
491 |
+
return_type='full_embedding').unsqueeze(0)
|
492 |
+
|
493 |
+
text_embeddings = text_embeddings.repeat((batch_size, 1, 1, 1))
|
494 |
+
|
495 |
+
# sd 1.x
|
496 |
+
height = 512
|
497 |
+
width = 512
|
498 |
+
|
499 |
+
latents = torch.randn((batch_size, unet.in_channels, height // 8, width // 8), )
|
500 |
+
latents = latents.to(device, dtype=text_embeddings.dtype)
|
501 |
+
|
502 |
+
test_scheduler.set_timesteps(num_inference_steps)
|
503 |
+
latents = latents * test_scheduler.init_noise_sigma
|
504 |
+
|
505 |
+
global record_feature
|
506 |
+
step = (test_scheduler.timesteps.size(0)) // record_nums
|
507 |
+
record_timestep = test_scheduler.timesteps[torch.arange(0, test_scheduler.timesteps.size(0), step=step)[:record_nums]]
|
508 |
+
|
509 |
+
for t in tqdm(test_scheduler.timesteps):
|
510 |
+
|
511 |
+
if t in record_timestep:
|
512 |
+
record_feature = True
|
513 |
+
else:
|
514 |
+
record_feature = False
|
515 |
+
|
516 |
+
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
517 |
+
latent_model_input = latents
|
518 |
+
latent_model_input = test_scheduler.scale_model_input(latent_model_input, t)
|
519 |
+
|
520 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
521 |
+
|
522 |
+
# compute the previous noisy sample x_t -> x_t-1
|
523 |
+
latents = test_scheduler.step(noise_pred, t, latents).prev_sample
|
524 |
+
|
525 |
+
return latents, text_embeddings
|
526 |
+
|
527 |
+
|
528 |
+
def merge_spatial_attention(concept_list, optimize_iters, new_concept_cfg, tokenizer, text_encoder, unet, unet_spatial_attn_list, test_scheduler, device):
|
529 |
+
LoRA_keys = []
|
530 |
+
for unet_lora in unet_spatial_attn_list:
|
531 |
+
LoRA_keys += list(unet_lora.keys())
|
532 |
+
LoRA_keys = set([
|
533 |
+
key.replace('.lora_down', '').replace('.lora_up', '')
|
534 |
+
for key in LoRA_keys
|
535 |
+
])
|
536 |
+
spatial_attention_layer_names = LoRA_keys
|
537 |
+
|
538 |
+
candidate_module_name = [
|
539 |
+
'attn2.to_q', 'attn2.to_out.0', 'attn1.to_q', 'attn1.to_k',
|
540 |
+
'attn1.to_v', 'attn1.to_out.0', 'ff.net.2', 'ff.net.0.proj',
|
541 |
+
'proj_out', 'proj_in'
|
542 |
+
]
|
543 |
+
candidate_module_name = [
|
544 |
+
name for name in candidate_module_name
|
545 |
+
if any([name in key for key in LoRA_keys])
|
546 |
+
]
|
547 |
+
|
548 |
+
logging.info(
|
549 |
+
f'unet have {len(spatial_attention_layer_names)} linear layer need to optimize'
|
550 |
+
)
|
551 |
+
|
552 |
+
global module_io_recoder
|
553 |
+
hooker_handlers = []
|
554 |
+
for name, module in unet.named_modules():
|
555 |
+
if any([x in name for x in candidate_module_name]):
|
556 |
+
hooker_handlers.append(
|
557 |
+
module.register_forward_hook(hook=get_hooker(name)))
|
558 |
+
|
559 |
+
logging.info(f'add {len(hooker_handlers)} hooker to unet')
|
560 |
+
|
561 |
+
original_state_dict = copy.deepcopy(unet.state_dict()) # original state dict
|
562 |
+
revise_edlora_unet_attention_forward(unet)
|
563 |
+
|
564 |
+
concept_weights_dict = {}
|
565 |
+
|
566 |
+
for concept, tuned_state_dict in zip(concept_list, unet_spatial_attn_list):
|
567 |
+
# set unet
|
568 |
+
module_io_recoder = {} # reinit module io recorder
|
569 |
+
|
570 |
+
merged_state_dict = merge_lora_into_weight(
|
571 |
+
original_state_dict,
|
572 |
+
tuned_state_dict,
|
573 |
+
spatial_attention_layer_names,
|
574 |
+
model_type='unet',
|
575 |
+
alpha=concept['unet_alpha'],
|
576 |
+
device=device)
|
577 |
+
unet.load_state_dict(merged_state_dict) # load merged parameters
|
578 |
+
|
579 |
+
concept_name = concept['concept_name']
|
580 |
+
concept_prompt = TEMPLATE_SIMPLE.format(concept_name)
|
581 |
+
|
582 |
+
|
583 |
+
for layer_name in spatial_attention_layer_names:
|
584 |
+
if layer_name not in concept_weights_dict:
|
585 |
+
concept_weights_dict[layer_name] = []
|
586 |
+
|
587 |
+
concept_weights_dict[layer_name].append(merged_state_dict[layer_name])
|
588 |
+
|
589 |
+
new_spatial_attention_weights = {}
|
590 |
+
# step 5: begin update model
|
591 |
+
for idx, layer_name in enumerate(spatial_attention_layer_names):
|
592 |
+
Wnew = torch.stack(concept_weights_dict[layer_name])
|
593 |
+
Wnew = torch.mean(Wnew, dim = 0)
|
594 |
+
new_spatial_attention_weights[layer_name] = Wnew
|
595 |
+
|
596 |
+
logging.info(f'remove {len(hooker_handlers)} hooker from unet')
|
597 |
+
|
598 |
+
for hook_handle in hooker_handlers:
|
599 |
+
hook_handle.remove()
|
600 |
+
|
601 |
+
return new_spatial_attention_weights
|
602 |
+
|
603 |
+
|
604 |
+
def compose_concepts(concept_cfg, optimize_textenc_iters, optimize_unet_iters, pretrained_model_path, save_path, suffix, device):
|
605 |
+
logging.info('------Step 1: load stable diffusion checkpoint------')
|
606 |
+
pipe, train_scheduler, test_scheduler = init_stable_diffusion(pretrained_model_path, device)
|
607 |
+
tokenizer, text_encoder, unet, vae = pipe.tokenizer, pipe.text_encoder, pipe.unet, pipe.vae
|
608 |
+
for param in itertools.chain(text_encoder.parameters(), unet.parameters(), vae.parameters()):
|
609 |
+
param.requires_grad = False
|
610 |
+
|
611 |
+
logging.info('------Step 2: load new concepts checkpoints------')
|
612 |
+
embedding_list, text_encoder_list, unet_crosskv_list, unet_spatial_attn_list, concept_list = parse_new_concepts(concept_cfg)
|
613 |
+
|
614 |
+
# step 1: inplace add new concept to tokenizer and embedding layers of text encoder
|
615 |
+
if any([item is not None for item in embedding_list]):
|
616 |
+
logging.info('------Step 3: merge token embedding------')
|
617 |
+
_, new_concept_cfg = merge_new_concepts_(embedding_list, concept_list, tokenizer, text_encoder)
|
618 |
+
else:
|
619 |
+
_, new_concept_cfg = {}, {}
|
620 |
+
logging.info('------Step 3: no new embedding, skip merging token embedding------')
|
621 |
+
|
622 |
+
# step 2: construct reparameterized text_encoder
|
623 |
+
if any([item is not None for item in text_encoder_list]):
|
624 |
+
logging.info('------Step 4: merge text encoder------')
|
625 |
+
new_text_encoder_weights = merge_text_encoder(
|
626 |
+
concept_list, optimize_textenc_iters, new_concept_cfg, tokenizer,
|
627 |
+
text_encoder, text_encoder_list, device)
|
628 |
+
|
629 |
+
# update the merged state_dict in text_encoder
|
630 |
+
text_encoder_state_dict = text_encoder.state_dict()
|
631 |
+
text_encoder_state_dict.update(new_text_encoder_weights)
|
632 |
+
text_encoder.load_state_dict(text_encoder_state_dict)
|
633 |
+
else:
|
634 |
+
new_text_encoder_weights = {}
|
635 |
+
logging.info('------Step 4: no new text encoder, skip merging text encoder------')
|
636 |
+
|
637 |
+
|
638 |
+
# step 3: merge unet (k,v in crosskv-attention) params, since they only receive input from text-encoder
|
639 |
+
|
640 |
+
if any([item is not None for item in unet_crosskv_list]):
|
641 |
+
logging.info('------Step 5: merge kv of cross-attention in unet------')
|
642 |
+
new_kv_weights = merge_kv_in_cross_attention(
|
643 |
+
concept_list, optimize_textenc_iters, new_concept_cfg,
|
644 |
+
tokenizer, text_encoder, unet, unet_crosskv_list, device)
|
645 |
+
# update the merged state_dict in kv of crosskv-attention in Unet
|
646 |
+
unet_state_dict = unet.state_dict()
|
647 |
+
unet_state_dict.update(new_kv_weights)
|
648 |
+
unet.load_state_dict(unet_state_dict)
|
649 |
+
else:
|
650 |
+
new_kv_weights = {}
|
651 |
+
logging.info('------Step 5: no new kv of cross-attention in unet, skip merging kv------')
|
652 |
+
|
653 |
+
# step 4: merge unet (q,k,v in self-attention, q in crosskv-attention)
|
654 |
+
if any([item is not None for item in unet_spatial_attn_list]):
|
655 |
+
logging.info('------Step 6: merge spatial attention (q in cross-attention, qkv in self-attention) in unet------')
|
656 |
+
new_spatial_attention_weights = merge_spatial_attention(
|
657 |
+
concept_list, optimize_unet_iters, new_concept_cfg, tokenizer,
|
658 |
+
text_encoder, unet, unet_spatial_attn_list, test_scheduler, device)
|
659 |
+
unet_state_dict = unet.state_dict()
|
660 |
+
unet_state_dict.update(new_spatial_attention_weights)
|
661 |
+
unet.load_state_dict(unet_state_dict)
|
662 |
+
else:
|
663 |
+
new_spatial_attention_weights = {}
|
664 |
+
logging.info('------Step 6: no new spatial-attention in unet, skip merging spatial attention------')
|
665 |
+
|
666 |
+
checkpoint_save_path = f'{save_path}/combined_model_{suffix}'
|
667 |
+
pipe.save_pretrained(checkpoint_save_path)
|
668 |
+
with open(os.path.join(checkpoint_save_path, 'new_concept_cfg.json'), 'w') as json_file:
|
669 |
+
json.dump(new_concept_cfg, json_file)
|
670 |
+
|
671 |
+
|
672 |
+
def parse_args():
|
673 |
+
parser = argparse.ArgumentParser('', add_help=False)
|
674 |
+
parser.add_argument('--concept_cfg', help='json file for multi-concept', required=True, type=str)
|
675 |
+
parser.add_argument('--save_path', help='folder name to save optimized weights', required=True, type=str)
|
676 |
+
parser.add_argument('--suffix', help='suffix name', default='base', type=str)
|
677 |
+
parser.add_argument('--pretrained_models', required=True, type=str)
|
678 |
+
parser.add_argument('--optimize_unet_iters', default=50, type=int)
|
679 |
+
parser.add_argument('--optimize_textenc_iters', default=500, type=int)
|
680 |
+
return parser.parse_args()
|
681 |
+
|
682 |
+
|
683 |
+
if __name__ == '__main__':
|
684 |
+
args = parse_args()
|
685 |
+
|
686 |
+
# s1: set logger
|
687 |
+
exp_dir = f'{args.save_path}'
|
688 |
+
os.makedirs(exp_dir, exist_ok=True)
|
689 |
+
log_file = f'{exp_dir}/combined_model_{args.suffix}.log'
|
690 |
+
set_logger(log_file=log_file)
|
691 |
+
logging.info(args)
|
692 |
+
|
693 |
+
compose_concepts(args.concept_cfg,
|
694 |
+
args.optimize_textenc_iters,
|
695 |
+
args.optimize_unet_iters,
|
696 |
+
args.pretrained_models,
|
697 |
+
args.save_path,
|
698 |
+
args.suffix,
|
699 |
+
device='cuda')
|