import gradio as gr from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer from threading import Thread import re import time from PIL import Image import torch import spaces processor = AutoProcessor.from_pretrained("ucsahin/TraVisionLM-DPO", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("ucsahin/TraVisionLM-base", trust_remote_code=True) model_dpo = AutoModelForCausalLM.from_pretrained("ucsahin/TraVisionLM-DPO", trust_remote_code=True) model.to("cuda:0") model_dpo.to("cuda:0") @spaces.GPU def bot_streaming(message, history, max_tokens, temperature, top_p, top_k, repetition_penalty): print(max_tokens, temperature, top_p, top_k, repetition_penalty) print(message) if message['files']: image = message['files'][-1]['path'] else: # if there's no image uploaded for this turn, look for images in the past turns for hist in history: if type(hist[0])==tuple: image = hist[0][0] if image is None: gr.Error("Lütfen önce bir resim yükleyin.") prompt = f"{message['text']}" image = Image.open(image).convert("RGB") inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda:0") generation_kwargs = dict( inputs, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty ) generated_text = "" model_outputs = model.generate(**generation_kwargs) dpo_outputs = model_dpo.generate(**generation_kwargs) ref_text = processor.batch_decode(model_outputs, skip_special_tokens=True)[0] dpo_text = processor.batch_decode(dpo_outputs, skip_special_tokens=True)[0] generated_text = f"

Base model cevabı:

\n{ref_text[len(prompt)+1:]}\n

DPO model cevabı:

\n{dpo_text[len(prompt)+1:]}\n" return generated_text gr.set_static_paths(paths=["static/images/"]) logo_path = "static/images/logo-color-v2.png" PLACEHOLDER = f"""

Resim yükleyin ve bir soru sorun!

Örnek resim ve soruları kullanabilirsiniz.

""" DESCRIPTION = f""" ### 875M parametreli küçük ama çok hızlı bir Türkçe Görsel Dil Modeli 🇹🇷🌟⚡️⚡️🇹🇷 Yüklediğiniz resimleri açıklatabilir ve onlarla ilgili ucu açık sorular sorabilirsiniz 🖼️🤖 **Bu demoda sorularınıza iki TraVisionLM modeli tarafından cevap verilmektedir:** ♊♊ - **Base model:** [TraVisionLM-base](https://huggingface.co/ucsahin/TraVisionLM-base) 🌛 - **DPO model:** [TraVisionLM-DPO](https://huggingface.co/ucsahin/TraVisionLM-DPO) 🌜 """ with gr.Accordion("Generation parameters", open=False) as parameter_accordion: max_tokens_item = gr.Slider(64, 1024, value=512, step=64, label="Max tokens") temperature_item = gr.Slider(0.1, 2, value=0.6, step=0.1, label="Temperature") top_p_item = gr.Slider(0, 1.0, value=0.9, step=0.05, label="Top_p") top_k_item = gr.Slider(0, 100, value=50, label="Top_k") repeat_penalty_item = gr.Slider(0, 2, value=1.2, label="Repeat penalty") demo = gr.ChatInterface( title="TraVisionLM - Demo", description=DESCRIPTION, fn=bot_streaming, chatbot=gr.Chatbot(placeholder=PLACEHOLDER, scale=1), examples=[ [{"text": "Resimde kaç kişi var?", "files":["./family.jpg"]}], [{"text": "Açıkla", "files":["./anitkabir2.jpg"]}], [{"text": "Kısaca açıkla", "files":["./at.jpg"]}], [{"text": "Görüntüdeki otobüsün görünümü nasıldır?", "files":["./bus.jpg"]}], [{"text": "Görüntüde hava durumu nasıl?", "files":["./plane.jpg"]}], [{"text": "Resimdeki ilginç unsurlar nelerdir?", "files":["./dog.jpg"]}], [{"text": "Tren istasyonu kalabalık mı yoksa boş mu?", "files":["./train.jpg"]}], [{"text": "Resimdeki araba hangi renk?", "files":["./car.jpg"]}], [{"text": "Görüntünün odak noktası nedir?", "files":["./mandog.jpg"]}], [{"text": "Resimde neresi görünüyor?", "files":["./galata.jpg"]}], [{"text": "Resim nasıl bir tarza sahip?", "files":["./suluboya.jpg"]}], [{"text": "Detaylı açıkla", "files":["./tren.jpg"]}], [{"text": "Resimde nasıl bir etkinlik var?", "files":["./paris1.jpg"]}], [{"text": "Görsel nasıl bir ortamı gösteriyor?", "files":["./lamba.jpg"]}], ], additional_inputs=[max_tokens_item, temperature_item, top_p_item, top_k_item, repeat_penalty_item], additional_inputs_accordion=parameter_accordion, stop_btn="Stop Generation", multimodal=True ) demo.launch(debug=True, max_file_size="5mb")