Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer | |
from threading import Thread | |
import re | |
import time | |
from PIL import Image | |
import torch | |
import spaces | |
processor = AutoProcessor.from_pretrained("ucsahin/TraVisionLM-base", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained("ucsahin/TraVisionLM-base", trust_remote_code=True) | |
model_dpo = AutoModelForCausalLM.from_pretrained("ucsahin/TraVisionLM-DPO", trust_remote_code=True) | |
model.to("cuda:0") | |
model_dpo.to("cuda:0") | |
def bot_streaming(message, history, max_tokens, temperature, top_p, top_k, repetition_penalty): | |
print(max_tokens, temperature, top_p, top_k, repetition_penalty) | |
print(message) | |
if message['files']: | |
image = message['files'][-1]['path'] | |
else: | |
# if there's no image uploaded for this turn, look for images in the past turns | |
for hist in history: | |
if type(hist[0])==tuple: | |
image = hist[0][0] | |
if image is None: | |
gr.Error("Lütfen önce bir resim yükleyin.") | |
prompt = f"{message['text']}" | |
image = Image.open(image).convert("RGB") | |
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda:0") | |
generation_kwargs = dict( | |
inputs, max_new_tokens=max_tokens, | |
do_sample=True, temperature=temperature, top_p=top_p, | |
top_k=top_k, repetition_penalty=repetition_penalty | |
) | |
generated_text = "" | |
model_outputs = model.generate(**generation_kwargs) | |
dpo_outputs = model_dpo.generate(**generation_kwargs) | |
ref_text = processor.batch_decode(model_outputs, skip_special_tokens=True)[0] | |
dpo_text = processor.batch_decode(dpo_outputs, skip_special_tokens=True)[0] | |
generated_text = f"<h3>Base model cevabı:</h3>\n{ref_text[len(prompt)+1:]}\n<h3>DPO model cevabı:</h3>\n{dpo_text[len(prompt)+1:]}" | |
return generated_text | |
gr.set_static_paths(paths=["static/images/"]) | |
logo_path = "static/images/logo-color-v2.png" | |
PLACEHOLDER = f""" | |
<div style="display: flex; flex-direction: column; align-items: center; text-align: center; margin: 30px"> | |
<img src="/file={logo_path}" style="width: 40%; height: auto; opacity: 80%"> | |
<h3>Resim yükleyin ve bir soru sorun!</h3> | |
<p>Örnek resim ve soruları kullanabilirsiniz.</p> | |
</div> | |
""" | |
DESCRIPTION = f""" | |
### 875M parametreli küçük ama çok hızlı bir Türkçe Görsel Dil Modeli 🇹🇷🌟⚡️⚡️🇹🇷 | |
Yüklediğiniz resimleri açıklatabilir ve onlarla ilgili ucu açık sorular sorabilirsiniz 🖼️🤖 | |
Detaylar için [ucsahin/TraVisionLM-base](https://huggingface.co/ucsahin/TraVisionLM-base) kontrol etmeyi unutmayın! | |
""" | |
with gr.Accordion("Generation parameters", open=False) as parameter_accordion: | |
max_tokens_item = gr.Slider(64, 1024, value=512, step=64, label="Max tokens") | |
temperature_item = gr.Slider(0.1, 2, value=0.6, step=0.1, label="Temperature") | |
top_p_item = gr.Slider(0, 1.0, value=0.9, step=0.05, label="Top_p") | |
top_k_item = gr.Slider(0, 100, value=50, label="Top_k") | |
repeat_penalty_item = gr.Slider(0, 2, value=1.2, label="Repeat penalty") | |
demo = gr.ChatInterface( | |
title="TraVisionLM - Demo", | |
description=DESCRIPTION, | |
fn=bot_streaming, | |
chatbot=gr.Chatbot(placeholder=PLACEHOLDER, scale=1), | |
examples=[ | |
[{"text": "Detaylı açıkla", "files":["./family.jpg"]}], | |
[{"text": "Görüntüde uçaklar ne yapıyor?", "files":["./plane.jpg"]}], | |
[{"text": "Kısaca açıkla", "files":["./dog.jpg"]}], | |
[{"text": "Tren istasyonu kalabalık mı yoksa boş mu?", "files":["./train.jpg"]}], | |
[{"text": "Resimdeki araba hangi renk?", "files":["./car.jpg"]}], | |
[{"text": "Görüntünün odak noktası nedir?", "files":["./mandog.jpg"]}] | |
], | |
additional_inputs=[max_tokens_item, temperature_item, top_p_item, top_k_item, repeat_penalty_item], | |
additional_inputs_accordion=parameter_accordion, | |
stop_btn="Stop Generation", | |
multimodal=True | |
) | |
demo.launch(debug=True, max_file_size="5mb") |