mnh
qq
6d848c4
import gradio as gr
import torch
import clip
from PIL import Image, ImageEnhance
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
def predict(image):
labels = "Early American Art,19th and 20th–Century Art,Contemporary Art,Modern Folk,African American Art,Latino Art,Mesoamerican,Egyptian,British Art,Celtic Art,German Art,Medieval European,Gothic,Native American,African Art,Asia pacific Art,Oceanía,Classical,Byzantine,Medieval,Gothic,Renaissance,Baroque,Rococo,Neoclassical,Modernism,Postmodern ,Irish,German,French,Italian,Spanish,Portuguese,Greek,Chinese,Japanese,Korean,Thai,Australian,Middle Eastern,Mesopotamian,Prehistoric,Mexican,Popart,Scottish,Netherlands"
# labels = "Japanese, Chinese, Roman, Greek, Etruscan, Scandinavian, Celtic, Medieval, Victorian, Neoclassic, Romanticism, Art Nouveau, Art deco"
labels = labels.split(',')
converter = ImageEnhance.Color(image)
image = converter.enhance(0.5)
image = image.convert("L")
image = preprocess(image).unsqueeze(0).to(device)
text = clip.tokenize([f"a character of origin: {c}" for c in labels]).to(device)
with torch.inference_mode():
logits_per_image, logits_per_text = model(image, text)
probs = logits_per_image.softmax(dim=-1).cpu().numpy()
return {k: float(v) for k, v in zip(labels, probs[0])}
# probs = predict(Image.open("../CLIP/CLIP.png"), "cat, dog, ball")
# print(probs)
gr.Interface(fn=predict,
inputs=[
gr.inputs.Image(label="Image to classify.", type="pil")],
theme="gradio/monochrome",
outputs="label",
description="Character Image classification").launch()