import gradio as gr from utilities.setup import get_files #import spaces from services.diarization import Diarizer from services.asr import Transcriber from speechbox import ASRDiarizationPipeline #@spaces.GPU def process_meeting(audio_input, num_speakers, speaker_names): """ audio_input: filepath --> str num_speakers: number --> int speaker_names: dataset --> np.array """ print(audio_input) # first, pass it through a diarization stage. #diarization_result, label_file = diarizer.run(audio_input, num_speakers) diarization_pipeline = diarizer.get_pipeline() # Next, pass it through a transctiption stage asr_pipeline = transcriber.get_pipeline() # After, match the diarization with the transcription pipeline = ASRDiarizationPipeline( asr_pipeline=asr_pipeline, diarization_pipeline=diarization_pipeline) # Finally, Clean up the docs. output = pipeline(audio_input, diarization_num_speakers = num_speakers) print(output) return "a", None #diarization_result, label_file def main(conf): with gr.Blocks(theme=gr.themes.Soft(text_size="lg")) as demo: with gr.TabItem(conf["layout"]["page_names"][0]): gr.Markdown("# 🎤 Non-Video Meeting Transcription and Speaker Diarization") gr.Markdown("![](file/microphone_pen_and_paper.png)") gr.Markdown(get_files.load_markdown_file(conf["layout"]["about"])) with gr.TabItem(conf["layout"]["page_names"][1]): gr.Markdown("# 🔊 Upload or record your meeting") audio_input = gr.Audio(type="filepath", label="Upload Audio File") num_speakers = gr.Dropdown(list(range(conf["session"]["min_speakers"], conf["session"]["max_speakers"])), label="Number of Speakers", value=conf["session"]["min_speakers"]) speaker_names = gr.Dataframe( label="Type your names and details. Your actual entries will be limited to the speakers you selected above.", headers=["Name", "Supporting Details"], datatype=["str", "str"], row_count=(5,"fixed"), col_count=(2, "fixed"), type="pandas" ) process_button = gr.Button("Process") with gr.TabItem(conf["layout"]["page_names"][2]): gr.Markdown("# 🔊 View and download your meeting transcript") diarization_output = gr.Textbox(label="Diarization Output") label_file_link = gr.File(label="Download DAW Labels") # Process process_button.click( fn=process_meeting, inputs=[audio_input, num_speakers, speaker_names], outputs=[diarization_output, label_file_link] ) demo.launch(server_name="0.0.0.0", allowed_paths=["/"]) if __name__ == "__main__": # get config conf = get_files.json_cfg() # initialize diarizer diarizer = Diarizer(conf) transcriber = Transcriber(conf) main(conf)