turhancan97's picture
add conf parameter to video prediction
8493ae9
import gradio as gr
import cv2
import requests
import os
import numpy as np
from math import atan2, cos, sin, sqrt, pi
from ultralytics import YOLO
def drawAxis(img, p_, q_, color, scale):
p = list(p_)
q = list(q_)
## [visualization1]
angle = atan2(p[1] - q[1], p[0] - q[0]) # angle in radians
hypotenuse = sqrt((p[1] - q[1]) * (p[1] - q[1]) + (p[0] - q[0]) * (p[0] - q[0]))
# Here we lengthen the arrow by a factor of scale
q[0] = p[0] - scale * hypotenuse/2 * cos(angle)
q[1] = p[1] - scale * hypotenuse/2 * sin(angle)
cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv2.LINE_AA)
# create the arrow hooks
p[0] = q[0] + 9 * cos(angle + pi / 4)
p[1] = q[1] + 9 * sin(angle + pi / 4)
cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv2.LINE_AA)
p[0] = q[0] + 9 * cos(angle - pi / 4)
p[1] = q[1] + 9 * sin(angle - pi / 4)
cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv2.LINE_AA)
## [visualization1]
def getOrientation(pts, img):
## [pca]
# Construct a buffer used by the pca analysis
sz = len(pts)
data_pts = np.empty((sz, 2), dtype=np.float64)
for i in range(data_pts.shape[0]):
data_pts[i,0] = pts[i,0,0]
data_pts[i,1] = pts[i,0,1]
# Perform PCA analysis
mean = np.empty((0))
mean, eigenvectors, eigenvalues = cv2.PCACompute2(data_pts, mean)
# Store the center of the object
cntr = (int(mean[0,0]), int(mean[0,1]))
## [pca]
## [visualization]
# Draw the principal components
cv2.circle(img, cntr, 3, (255, 0, 255), 10)
p1 = (cntr[0] + 0.02 * eigenvectors[0,0] * eigenvalues[0,0], cntr[1] + 0.02 * eigenvectors[0,1] * eigenvalues[0,0])
p2 = (cntr[0] - 0.02 * eigenvectors[1,0] * eigenvalues[1,0], cntr[1] - 0.02 * eigenvectors[1,1] * eigenvalues[1,0])
drawAxis(img, cntr, p1, (255, 255, 0), 1)
drawAxis(img, cntr, p2, (255, 255, 0), 4)
angle = atan2(eigenvectors[0,1], eigenvectors[0,0]) # orientation in radians
## [visualization]
angle_deg = -(int(np.rad2deg(angle))-180) % 180
# # Label with the rotation angle
# label = str(int(np.rad2deg(angle))) + " deg"
# textbox = cv2.rectangle(img, (cntr[0]+60, cntr[1]-25), (cntr[0] + 150, cntr[1] + 10), (255,255,255), -1)
# cv2.putText(img, label, (cntr[0]+60, cntr[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1, cv2.LINE_AA)
return angle_deg
file_urls = [
'https://github.com/lucarei/orientation-detection-robotic-grasping/assets/22428774/cefd9731-c57c-428b-b401-fd54a8bd0a95',
'https://github.com/lucarei/orientation-detection-robotic-grasping/assets/22428774/acbad76a-33f9-4028-b012-4ece5998c272',
'https://github.com/lucarei/orientation-detection-robotic-grasping/assets/22428774/ce8a0fb9-99ea-4952-bcc4-3afa023066d9',
'https://dl.dropboxusercontent.com/scl/fi/flbf7vvoxgzoe9adovadm/video-540p.mp4?dl=0&rlkey=jbecmpu727q7yirvquma9m7w2'
]
def download_file(url, save_name):
url = url
if not os.path.exists(save_name):
file = requests.get(url)
open(save_name, 'wb').write(file.content)
for i, url in enumerate(file_urls):
if 'mp4' in file_urls[i]:
download_file(
file_urls[i],
f"video.mp4"
)
else:
download_file(
file_urls[i],
f"image_{i}.jpg"
)
model = YOLO('best.pt')
path = [['image_0.jpg'], ['image_1.jpg'], ['image_2.jpg']]
video_path = [['video.mp4']]
def show_preds_image(image_path):
image = cv2.imread(image_path)
#resize image (optional)
img_res_toshow = cv2.resize(image, None, fx= 0.5, fy= 0.5, interpolation= cv2.INTER_LINEAR)
height=img_res_toshow.shape[0]
width=img_res_toshow.shape[1]
dim=(width,height)
outputs = model.predict(source=img_res_toshow,conf=0.4)
boxes = outputs[0].boxes.cls
class_list = []
for class_n in boxes.cpu().numpy():
class_list.append(outputs[0].names[class_n])
angle_list = []
for object in range(len(outputs[0].masks.masks)):
#obtain BW image
bw=(outputs[0].masks.masks[object].cpu().numpy() * 255).astype("uint8")
#BW image with same dimention of initial image
bw=cv2.resize(bw, dim, interpolation = cv2.INTER_AREA)
img=img_res_toshow
contours, _ = cv2.findContours(bw, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
for i, c in enumerate(contours):
# Calculate the area of each contour
area = cv2.contourArea(c)
# Ignore contours that are too small or too large
if area < 2500 or 500000 < area:
continue
# Draw each contour only for visualisation purposes
cv2.drawContours(img, contours, i, (0, 0, 255), 2)
# Find the orientation of each shape
angle_deg = getOrientation(c, img)
angle_list.append(angle_deg)
# Create a text string for the orientation of the objects and the class of the objects
text = ""
for i in range(len(angle_list)):
text = text + "Object " + str(i+1) + ": " + str(angle_list[i]) + " deg, " + class_list[i] + "\n"
results = outputs[0].cpu().numpy()
for i, det in enumerate(results.boxes.xyxy):
cv2.rectangle(
img,
(int(det[0]), int(det[1])),
(int(det[2]), int(det[3])),
color=(255, 0, 0),
thickness=2,
lineType=cv2.LINE_AA
)
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB), text
inputs_image = [
gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image = [
gr.components.Image(type="numpy", label="Output Image"),
gr.outputs.Textbox(label="Orientation Angle")
]
interface_image = gr.Interface(
fn=show_preds_image,
inputs=inputs_image,
outputs=outputs_image,
title="Trash Detection with Orientation",
examples=path,
cache_examples=False,
)
def show_preds_video(video_path):
cap = cv2.VideoCapture(video_path)
while(cap.isOpened()):
ret, frame = cap.read()
if ret:
frame_copy = frame.copy()
#resize image (optional)
img_res_toshow = cv2.resize(frame_copy, None, fx= 0.5, fy= 0.5, interpolation= cv2.INTER_LINEAR)
height=img_res_toshow.shape[0]
width=img_res_toshow.shape[1]
dim=(width,height)
outputs = model.predict(source=img_res_toshow,conf=0.4)
for object in range(len(outputs[0].masks.masks)):
#obtain BW image
bw=(outputs[0].masks.masks[object].cpu().numpy() * 255).astype("uint8")
#BW image with same dimention of initial image
bw=cv2.resize(bw, dim, interpolation = cv2.INTER_AREA)
img=img_res_toshow
contours, _ = cv2.findContours(bw, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
for i, c in enumerate(contours):
# Calculate the area of each contour
area = cv2.contourArea(c)
# Ignore contours that are too small or too large
if area < 2500 or 500000 < area:
continue
# Draw each contour only for visualisation purposes
cv2.drawContours(img, contours, i, (0, 0, 255), 2)
# Find the orientation of each shape
angle_deg = getOrientation(c, img)
results = outputs[0].cpu().numpy()
for i, det in enumerate(results.boxes.xyxy):
cv2.rectangle(
img,
(int(det[0]), int(det[1])),
(int(det[2]), int(det[3])),
color=(255, 0, 0),
thickness=2,
lineType=cv2.LINE_AA
)
yield cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
inputs_video = [
gr.components.Video(type="filepath", label="Input Video"),
]
outputs_video = [
gr.components.Image(type="numpy", label="Output Image"),
]
interface_video = gr.Interface(
fn=show_preds_video,
inputs=inputs_video,
outputs=outputs_video,
title="Trash Detection with Orientation",
examples=video_path,
cache_examples=False,
)
gr.TabbedInterface(
[interface_image, interface_video],
tab_names=['Image inference', 'Video inference']
).queue().launch()