test / tools /sifid.py
Tu Bui
first commit
6142a25
import numpy as np
import torch
from scipy import linalg
import torchvision
from torchvision import transforms
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representative data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representative data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1) +
np.trace(sigma2) - 2 * tr_covmean)
class SIFID(object):
def __init__(self, dims=64) -> None:
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
self.model = InceptionV3([block_idx]).cuda()
self.model.eval()
self.dims = dims
def calculate_activation_statistics(self, x):
act = self.get_activations(x)
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma
def get_activations(self, x):
# x tensor (B, C, H, W) in range [0, 1]
batch_size = x.shape[0]
with torch.no_grad():
pred = self.model(x)[0]
pred = pred.cpu().numpy()
pred = pred.transpose(0, 2, 3, 1).reshape(batch_size*pred.shape[2]*pred.shape[3],-1)
return pred
def __call__(self, x1, x2):
# x1, x2 tensor (B, C, H, W) in range [-1, 1]
x1, x2 = (x1 + 1.)/2, (x2 + 1.)/2 # [-1, 1] -> [0, 1]
m1, s1 = self.calculate_activation_statistics(x1.unsqueeze(0).cuda())
m2, s2 = self.calculate_activation_statistics(x2.unsqueeze(0).cuda())
return calculate_frechet_distance(m1, s1, m2, s2)
class InceptionV3(nn.Module):
"""Pretrained InceptionV3 network returning feature maps"""
# Index of default block of inception to return,
# corresponds to output of final average pooling
DEFAULT_BLOCK_INDEX = 3
# Maps feature dimensionality to their output blocks indices
BLOCK_INDEX_BY_DIM = {
64: 0, # First max pooling features
192: 1, # Second max pooling featurs
768: 2, # Pre-aux classifier features
2048: 3 # Final average pooling features
}
def __init__(self,
output_blocks=[DEFAULT_BLOCK_INDEX],
resize_input=False,
normalize_input=True,
requires_grad=False):
"""Build pretrained InceptionV3
Parameters
----------
output_blocks : list of int
Indices of blocks to return features of. Possible values are:
- 0: corresponds to output of first max pooling
- 1: corresponds to output of second max pooling
- 2: corresponds to output which is fed to aux classifier
- 3: corresponds to output of final average pooling
resize_input : bool
If true, bilinearly resizes input to width and height 299 before
feeding input to model. As the network without fully connected
layers is fully convolutional, it should be able to handle inputs
of arbitrary size, so resizing might not be strictly needed
normalize_input : bool
If true, scales the input from range (0, 1) to the range the
pretrained Inception network expects, namely (-1, 1)
requires_grad : bool
If true, parameters of the model require gradient. Possibly useful
for finetuning the network
"""
super(InceptionV3, self).__init__()
self.resize_input = resize_input
self.normalize_input = normalize_input
self.output_blocks = sorted(output_blocks)
self.last_needed_block = max(output_blocks)
assert self.last_needed_block <= 3, \
'Last possible output block index is 3'
self.blocks = nn.ModuleList()
inception = torchvision.models.inception_v3(pretrained=True)
# Block 0: input to maxpool1
block0 = [
inception.Conv2d_1a_3x3,
inception.Conv2d_2a_3x3,
inception.Conv2d_2b_3x3,
]
self.blocks.append(nn.Sequential(*block0))
# Block 1: maxpool1 to maxpool2
if self.last_needed_block >= 1:
block1 = [
nn.MaxPool2d(kernel_size=3, stride=2),
inception.Conv2d_3b_1x1,
inception.Conv2d_4a_3x3,
]
self.blocks.append(nn.Sequential(*block1))
# Block 2: maxpool2 to aux classifier
if self.last_needed_block >= 2:
block2 = [
nn.MaxPool2d(kernel_size=3, stride=2),
inception.Mixed_5b,
inception.Mixed_5c,
inception.Mixed_5d,
inception.Mixed_6a,
inception.Mixed_6b,
inception.Mixed_6c,
inception.Mixed_6d,
inception.Mixed_6e,
]
self.blocks.append(nn.Sequential(*block2))
# Block 3: aux classifier to final avgpool
if self.last_needed_block >= 3:
block3 = [
inception.Mixed_7a,
inception.Mixed_7b,
inception.Mixed_7c,
]
self.blocks.append(nn.Sequential(*block3))
if self.last_needed_block >= 4:
block4 = [
nn.AdaptiveAvgPool2d(output_size=(1, 1))
]
self.blocks.append(nn.Sequential(*block4))
for param in self.parameters():
param.requires_grad = requires_grad
def forward(self, inp):
"""Get Inception feature maps
Parameters
----------
inp : torch.autograd.Variable
Input tensor of shape Bx3xHxW. Values are expected to be in
range (0, 1)
Returns
-------
List of torch.autograd.Variable, corresponding to the selected output
block, sorted ascending by index
"""
outp = []
x = inp
if self.resize_input:
x = F.upsample(x,
size=(299, 299),
mode='bilinear',
align_corners=False)
if self.normalize_input:
x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1)
for idx, block in enumerate(self.blocks):
x = block(x)
if idx in self.output_blocks:
outp.append(x)
if idx == self.last_needed_block:
break
return outp
if __name__ == '__main__':
tform = transforms.Compose([transforms.Resize((256,256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])])
im1 = Image.open('test1.jpg')
im2 = Image.open('test2.jpg')
im1 = tform(im1) # 3xHxW in [-1,]
im2 = tform(im2)
sifid_model = SIFID()
sifid_score = sifid_model(im1, im2)
print(sifid_score)