|
import numpy as np |
|
import torch |
|
from scipy import linalg |
|
import torchvision |
|
from torchvision import transforms |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from PIL import Image |
|
|
|
|
|
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): |
|
"""Numpy implementation of the Frechet Distance. |
|
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) |
|
and X_2 ~ N(mu_2, C_2) is |
|
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). |
|
Stable version by Dougal J. Sutherland. |
|
Params: |
|
-- mu1 : Numpy array containing the activations of a layer of the |
|
inception net (like returned by the function 'get_predictions') |
|
for generated samples. |
|
-- mu2 : The sample mean over activations, precalculated on an |
|
representative data set. |
|
-- sigma1: The covariance matrix over activations for generated samples. |
|
-- sigma2: The covariance matrix over activations, precalculated on an |
|
representative data set. |
|
Returns: |
|
-- : The Frechet Distance. |
|
""" |
|
|
|
mu1 = np.atleast_1d(mu1) |
|
mu2 = np.atleast_1d(mu2) |
|
|
|
sigma1 = np.atleast_2d(sigma1) |
|
sigma2 = np.atleast_2d(sigma2) |
|
|
|
assert mu1.shape == mu2.shape, \ |
|
'Training and test mean vectors have different lengths' |
|
assert sigma1.shape == sigma2.shape, \ |
|
'Training and test covariances have different dimensions' |
|
|
|
diff = mu1 - mu2 |
|
|
|
|
|
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) |
|
if not np.isfinite(covmean).all(): |
|
msg = ('fid calculation produces singular product; ' |
|
'adding %s to diagonal of cov estimates') % eps |
|
print(msg) |
|
offset = np.eye(sigma1.shape[0]) * eps |
|
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) |
|
|
|
|
|
if np.iscomplexobj(covmean): |
|
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): |
|
m = np.max(np.abs(covmean.imag)) |
|
raise ValueError('Imaginary component {}'.format(m)) |
|
covmean = covmean.real |
|
|
|
tr_covmean = np.trace(covmean) |
|
|
|
return (diff.dot(diff) + np.trace(sigma1) + |
|
np.trace(sigma2) - 2 * tr_covmean) |
|
|
|
|
|
class SIFID(object): |
|
def __init__(self, dims=64) -> None: |
|
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] |
|
self.model = InceptionV3([block_idx]).cuda() |
|
self.model.eval() |
|
self.dims = dims |
|
|
|
def calculate_activation_statistics(self, x): |
|
act = self.get_activations(x) |
|
mu = np.mean(act, axis=0) |
|
sigma = np.cov(act, rowvar=False) |
|
return mu, sigma |
|
|
|
def get_activations(self, x): |
|
|
|
batch_size = x.shape[0] |
|
with torch.no_grad(): |
|
pred = self.model(x)[0] |
|
pred = pred.cpu().numpy() |
|
pred = pred.transpose(0, 2, 3, 1).reshape(batch_size*pred.shape[2]*pred.shape[3],-1) |
|
return pred |
|
|
|
def __call__(self, x1, x2): |
|
|
|
x1, x2 = (x1 + 1.)/2, (x2 + 1.)/2 |
|
m1, s1 = self.calculate_activation_statistics(x1.unsqueeze(0).cuda()) |
|
m2, s2 = self.calculate_activation_statistics(x2.unsqueeze(0).cuda()) |
|
return calculate_frechet_distance(m1, s1, m2, s2) |
|
|
|
|
|
class InceptionV3(nn.Module): |
|
"""Pretrained InceptionV3 network returning feature maps""" |
|
|
|
|
|
|
|
DEFAULT_BLOCK_INDEX = 3 |
|
|
|
|
|
BLOCK_INDEX_BY_DIM = { |
|
64: 0, |
|
192: 1, |
|
768: 2, |
|
2048: 3 |
|
} |
|
|
|
def __init__(self, |
|
output_blocks=[DEFAULT_BLOCK_INDEX], |
|
resize_input=False, |
|
normalize_input=True, |
|
requires_grad=False): |
|
"""Build pretrained InceptionV3 |
|
Parameters |
|
---------- |
|
output_blocks : list of int |
|
Indices of blocks to return features of. Possible values are: |
|
- 0: corresponds to output of first max pooling |
|
- 1: corresponds to output of second max pooling |
|
- 2: corresponds to output which is fed to aux classifier |
|
- 3: corresponds to output of final average pooling |
|
resize_input : bool |
|
If true, bilinearly resizes input to width and height 299 before |
|
feeding input to model. As the network without fully connected |
|
layers is fully convolutional, it should be able to handle inputs |
|
of arbitrary size, so resizing might not be strictly needed |
|
normalize_input : bool |
|
If true, scales the input from range (0, 1) to the range the |
|
pretrained Inception network expects, namely (-1, 1) |
|
requires_grad : bool |
|
If true, parameters of the model require gradient. Possibly useful |
|
for finetuning the network |
|
""" |
|
super(InceptionV3, self).__init__() |
|
|
|
self.resize_input = resize_input |
|
self.normalize_input = normalize_input |
|
self.output_blocks = sorted(output_blocks) |
|
self.last_needed_block = max(output_blocks) |
|
|
|
assert self.last_needed_block <= 3, \ |
|
'Last possible output block index is 3' |
|
|
|
self.blocks = nn.ModuleList() |
|
|
|
inception = torchvision.models.inception_v3(pretrained=True) |
|
|
|
|
|
block0 = [ |
|
inception.Conv2d_1a_3x3, |
|
inception.Conv2d_2a_3x3, |
|
inception.Conv2d_2b_3x3, |
|
] |
|
|
|
|
|
self.blocks.append(nn.Sequential(*block0)) |
|
|
|
|
|
if self.last_needed_block >= 1: |
|
block1 = [ |
|
nn.MaxPool2d(kernel_size=3, stride=2), |
|
inception.Conv2d_3b_1x1, |
|
inception.Conv2d_4a_3x3, |
|
] |
|
self.blocks.append(nn.Sequential(*block1)) |
|
|
|
|
|
if self.last_needed_block >= 2: |
|
block2 = [ |
|
nn.MaxPool2d(kernel_size=3, stride=2), |
|
inception.Mixed_5b, |
|
inception.Mixed_5c, |
|
inception.Mixed_5d, |
|
inception.Mixed_6a, |
|
inception.Mixed_6b, |
|
inception.Mixed_6c, |
|
inception.Mixed_6d, |
|
inception.Mixed_6e, |
|
] |
|
self.blocks.append(nn.Sequential(*block2)) |
|
|
|
|
|
if self.last_needed_block >= 3: |
|
block3 = [ |
|
inception.Mixed_7a, |
|
inception.Mixed_7b, |
|
inception.Mixed_7c, |
|
] |
|
self.blocks.append(nn.Sequential(*block3)) |
|
|
|
if self.last_needed_block >= 4: |
|
block4 = [ |
|
nn.AdaptiveAvgPool2d(output_size=(1, 1)) |
|
] |
|
self.blocks.append(nn.Sequential(*block4)) |
|
|
|
for param in self.parameters(): |
|
param.requires_grad = requires_grad |
|
|
|
def forward(self, inp): |
|
"""Get Inception feature maps |
|
Parameters |
|
---------- |
|
inp : torch.autograd.Variable |
|
Input tensor of shape Bx3xHxW. Values are expected to be in |
|
range (0, 1) |
|
Returns |
|
------- |
|
List of torch.autograd.Variable, corresponding to the selected output |
|
block, sorted ascending by index |
|
""" |
|
outp = [] |
|
x = inp |
|
|
|
if self.resize_input: |
|
x = F.upsample(x, |
|
size=(299, 299), |
|
mode='bilinear', |
|
align_corners=False) |
|
|
|
if self.normalize_input: |
|
x = 2 * x - 1 |
|
|
|
for idx, block in enumerate(self.blocks): |
|
x = block(x) |
|
if idx in self.output_blocks: |
|
outp.append(x) |
|
|
|
if idx == self.last_needed_block: |
|
break |
|
|
|
return outp |
|
|
|
if __name__ == '__main__': |
|
tform = transforms.Compose([transforms.Resize((256,256)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])]) |
|
im1 = Image.open('test1.jpg') |
|
im2 = Image.open('test2.jpg') |
|
im1 = tform(im1) |
|
im2 = tform(im2) |
|
sifid_model = SIFID() |
|
sifid_score = sifid_model(im1, im2) |
|
print(sifid_score) |
|
|