File size: 4,888 Bytes
6142a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""

@author: Tu Bui @surrey.ac.uk
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from scipy import fftpack
import sys, os
from pathlib import Path
import numpy as np 
import random
import glob
import json
import time
import importlib
import pandas as pd
from tqdm import tqdm
# from IPython.display import display
# import seaborn as sns
import matplotlib
# matplotlib.use('Agg')  # headless run
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from PIL import Image, ImageDraw, ImageFont
cmap = plt.get_cmap("tab10")  # cmap as function
cmap = plt.rcParams['axes.prop_cycle'].by_key()['color']  # cmap 

FONT = '/vol/research/tubui1/_base/utils/FreeSans.ttf'

# def imshow(im):
#     if type(im) is np.ndarray:
#         im = Image.fromarray(im)
#     display(im)

def make_grid(array_list, gsize=(3,3)):
    """
    make a grid image from a list of image array (RGB)
    return: array RGB
    """
    assert len(gsize)==2 and gsize[0]*gsize[1]==len(array_list)
    h,w,c = array_list[0].shape
    out = np.array(array_list).reshape(gsize[0], gsize[1], h, w, c).transpose(0, 2, 1, 3, 4).reshape(gsize[0]*h, gsize[1]*w, c)
    return out 

def collage(im_list, size=None, pad=0, color=255):
    """
    generalised function of make_grid()
    work on PIL/numpy images of arbitrary size
    """
    if size is None:
        size=(1, len(im_list))
    assert len(size)==2
    if isinstance(im_list[0], np.ndarray):
        im_list = [Image.fromarray(im) for im in im_list]
    h, w = size
    n = len(im_list)
    canvas = []
    for i in range(h):
        start, end = i*w, min((i+1)*w, n)
        row = combine_horz(im_list[start:end], pad, color)
        canvas.append(row)
    canvas = combine_vert(canvas, pad, color)
    return canvas

def combine_horz(pil_ims, pad=0, c=255):
    """
    Combines multiple pil_ims into a single side-by-side PIL image object.
    """
    widths, heights = zip(*(i.size for i in pil_ims))
    total_width = sum(widths) + (len(pil_ims)-1) * pad
    max_height = max(heights)
    color = (c,c,c)
    new_im = Image.new('RGB', (total_width, max_height), color)
    x_offset = 0
    for im in pil_ims:
        new_im.paste(im, (x_offset,0))
        x_offset += (im.size[0] + pad) 
    return new_im


def combine_vert(pil_ims, pad=0, c=255):
    """
    Combines multiple pil_ims into a single vertical PIL image object.
    """
    widths, heights = zip(*(i.size for i in pil_ims))
    max_width = max(widths)
    total_height = sum(heights) + (len(pil_ims)-1)*pad
    color = (c,c,c)
    new_im = Image.new('RGB', (max_width, total_height), color)
    y_offset = 0
    for im in pil_ims:
        new_im.paste(im, (0,y_offset))
        y_offset += (im.size[1] + pad)
    return new_im 

def make_text_image(img_shape=(100,20), text='hello', font_path=FONT, offset=(0,0), font_size=16):
    """
    make a text image with given width/height and font size
    Args:
    img_shape, offset    tuple (width, height)
    font_path            path to font file (TrueType)
    font_size            max font size, actual may smaller

    Return:
    pil image
    """
    im = Image.new('RGB', tuple(img_shape), (255,255,255))
    draw = ImageDraw.Draw(im)

    def get_font_size(max_font_size):
        font = ImageFont.truetype(font_path, max_font_size)
        text_size = font.getsize(text)  # (w,h)
        start_w = int((img_shape[0] - text_size[0]) / 2)
        start_h = int((img_shape[1] - text_size[1])/2)
        if start_h <0 or start_w < 0:
            return get_font_size(max_font_size-2)
        else:
            return font, (start_w, start_h)
    font, pos = get_font_size(font_size)
    pos = (pos[0]+offset[0], pos[1]+offset[1])
    draw.text(pos, text, font=font, fill=0)
    return im


def log_scale(array, epsilon=1e-12):
    """Log scale the input array.
    """
    array = np.abs(array)
    array += epsilon  # no zero in log
    array = np.log(array)
    return array

def dct2(array):
    """2D DCT"""
    array = fftpack.dct(array, type=2, norm="ortho", axis=0)
    array = fftpack.dct(array, type=2, norm="ortho", axis=1)
    return array

def idct2(array):
    """inverse 2D DCT"""
    array = fftpack.idct(array, type=2, norm="ortho", axis=0)
    array = fftpack.idct(array, type=2, norm="ortho", axis=1)
    return array


class DCT(object):
    def __init__(self, log=True):
        self.log = log 

    def __call__(self, x):
        x = np.array(x)
        x = dct2(x)
        if self.log:
            x = log_scale(x)
        # normalize
        x = np.clip((x - x.min())/(x.max() - x.min()) * 255, 0, 255).astype(np.uint8)
        return Image.fromarray(x)

    def __repr__(self):
        s = f'(Discrete Cosine Transform, logarithm={self.log})'
        return self.__class__.__name__ + s