File size: 9,492 Bytes
6142a25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
streamlit app demo
how to run:
streamlit run app.py --server.port 8501
@author: Tu Bui @surrey.ac.uk
"""
import os, sys, torch
import argparse
from pathlib import Path
import numpy as np
import pickle
import pytorch_lightning as pl
from torchvision import transforms
import argparse
from ldm.util import instantiate_from_config
from omegaconf import OmegaConf
from PIL import Image
from tools.augment_imagenetc import RandomImagenetC
from io import BytesIO
from tools.helpers import welcome_message
from tools.ecc import BCH, RSC
import streamlit as st
from streamlit.source_util import (
page_icon_and_name,
calc_md5,
get_pages,
_on_pages_changed
)
model_names = ['UNet']
SECRET_LEN = 100
def delete_page(main_script_path_str, page_name):
current_pages = get_pages(main_script_path_str)
for key, value in current_pages.items():
print(value['page_name'])
if value['page_name'] == page_name:
del current_pages[key]
break
else:
pass
_on_pages_changed.send()
def add_page(main_script_path_str, page_name):
pages = get_pages(main_script_path_str)
main_script_path = Path(main_script_path_str)
pages_dir = main_script_path.parent / "pages"
# st.write(list(pages_dir.glob("*.py"))+list(main_script_path.parent.glob("*.py")))
script_path = [f for f in list(pages_dir.glob("*.py"))+list(main_script_path.parent.glob("*.py")) if f.name.find(page_name) != -1][0]
script_path_str = str(script_path.resolve())
pi, pn = page_icon_and_name(script_path)
psh = calc_md5(script_path_str)
pages[psh] = {
"page_script_hash": psh,
"page_name": pn,
"icon": pi,
"script_path": script_path_str,
}
_on_pages_changed.send()
def unormalize(x):
# convert x in range [-1, 1], (B,C,H,W), tensor to [0, 255], uint8, numpy, (B,H,W,C)
x = torch.clamp((x + 1) * 127.5, 0, 255).permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
return x
def to_bytes(x, mime):
x = Image.fromarray(x)
buf = BytesIO()
f = "JPEG" if mime == 'image/jpeg' else "PNG"
x.save(buf, format=f)
byte_im = buf.getvalue()
return byte_im
def load_UNet(args):
print('args: ', args)
# # crop safe model
# config_file = '/mnt/fast/nobackup/scratch4weeks/tb0035/projects/diffsteg/FLAE/simple_tform2/configs/-project.yaml'
# weight_file = '/mnt/fast/nobackup/scratch4weeks/tb0035/projects/diffsteg/FLAE/simple_tform2/checkpoints/epoch=000060-step=000189999.ckpt'
# # resized crop safe model
# config_file = '/mnt/fast/nobackup/scratch4weeks/tb0035/projects/diffsteg/FLAE/simple_t2_croprs/configs/-project.yaml'
# weight_file = '/mnt/fast/nobackup/scratch4weeks/tb0035/projects/diffsteg/FLAE/simple_t2_croprs/checkpoints/epoch=000070-step=000219999.ckpt'
config_file = args.config_file
weight_file = args.weight_file
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if weight_file.startswith('http'): # download from url
weight_dir = Path('./weights')
weight_dir.mkdir(exist_ok=True)
weight_path = weight_dir / weight_file.split('/')[-1]
config_path = weight_dir / config_file.split('/')[-1]
if not weight_path.exists():
import wget
print(f'Downloading {weight_file}...')
with st.spinner("Downloading model... this may take awhile!"):
wget.download(weight_file, str(weight_path))
wget.download(config_file, str(config_path))
weight_file = str(weight_path)
config_file = str(config_path)
config = OmegaConf.load(config_file).model
secret_len = config.params.secret_len
assert SECRET_LEN == secret_len
model = instantiate_from_config(config)
state_dict = torch.load(weight_file, map_location=torch.device('cpu'))
if 'global_step' in state_dict:
print(f'Global step: {state_dict["global_step"]}, epoch: {state_dict["epoch"]}')
if 'state_dict' in state_dict:
state_dict = state_dict['state_dict']
misses, ignores = model.load_state_dict(state_dict, strict=False)
print(f'Missed keys: {misses}\nIgnore keys: {ignores}')
model = model.to(device)
model.eval()
return model
def embed_secret(model_name, model, cover, tform, secret):
if model_name == 'UNet':
w, h = cover.size
with torch.no_grad():
im = tform(cover).unsqueeze(0).cuda() # 1, 3, 256, 256
stego, _ = model(im, secret) # 1, 3, 256, 256
res = (stego.clamp(-1,1) - im) # (1,3,256,256) residual
res = torch.nn.functional.interpolate(res, (h,w), mode='bilinear')
res = res.permute(0,2,3,1).cpu().numpy() # (1,256,256,3)
stego_uint8 = np.clip(res[0] + np.array(cover)/127.5-1., -1,1)*127.5+127.5 # (256, 256, 3), ndarray, uint8
stego_uint8 = stego_uint8.astype(np.uint8)
else:
raise NotImplementedError
return stego_uint8
def identity(x):
return x
def decode_secret(model_name, model, im, tform):
if model_name in ['RoSteALS', 'UNet']:
with torch.no_grad():
im = tform(im).unsqueeze(0).cuda() # 1, 3, 256, 256
secret_pred = (model.decoder(im) > 0).cpu().numpy() # 1, 100
else:
raise NotImplementedError
return secret_pred
@st.cache_resource
def load_model(model_name, _args):
if model_name == 'UNet':
tform_emb = transforms.Compose([
transforms.Resize((256,256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
tform_det = transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
model = load_UNet(_args)
else:
raise NotImplementedError
return model, tform_emb, tform_det
@st.cache_resource
def load_ecc(ecc_name):
if ecc_name == 'BCH':
# ecc = BCH(285, 10, SECRET_LEN, verbose=True)
ecc = BCH(payload_len= SECRET_LEN, verbose=True)
elif ecc_name == 'RSC':
ecc = RSC(data_bytes=16, ecc_bytes=4, verbose=True)
return ecc
class Resize(object):
def __init__(self, size=None) -> None:
self.size = size
def __call__(self, x, size=None):
if isinstance(x, np.ndarray):
x = Image.fromarray(x)
new_size = size if size is not None else self.size
if min(x.size) > min(new_size): # downsample
x = x.resize(new_size, Image.LANCZOS)
else: # upsample
x = x.resize(new_size, Image.BILINEAR)
x = np.array(x)
return x
def parse_st_args():
# usage: streamlit run app.py -- --arg1 val1 --arg2 val2
parser = argparse.ArgumentParser()
parser.add_argument('--weight', default='/mnt/fast/nobackup/scratch4weeks/tb0035/projects/diffsteg/FLAE/simple_t2_croprs/checkpoints/epoch=000070-step=000219999.ckpt')
parser.add_argument('--config', default='/mnt/fast/nobackup/scratch4weeks/tb0035/projects/diffsteg/FLAE/simple_t2_croprs/configs/-project.yaml')
# parser.add_argument('--cpu', action='store_true')
args = parser.parse_args()
return args
def app(args):
# delete_page('Embed_Secret', 'Extract_Secret')
st.title('Watermarking Demo')
# setup model
model_name = st.selectbox("Choose the model", model_names)
model, tform_emb, tform_det = load_model(model_name, args)
display_width = 300
# ecc
ecc = load_ecc('BCH')
assert ecc.get_total_len() == SECRET_LEN
# setup st
st.subheader("Input")
image_file = st.file_uploader("Upload an image", type=["png","jpg","jpeg"])
if image_file is not None:
print('Image: ', image_file.name)
ext = image_file.name.split('.')[-1]
im = Image.open(image_file).convert('RGB')
size0 = im.size
st.image(im, width=display_width)
secret_text = st.text_input(f'Input the secret (max {ecc.data_len} chars)', 'A secret')
assert len(secret_text) <= ecc.data_len
# embed
st.subheader("Embed results")
status = st.empty()
prep = transforms.Compose([
transforms.Resize((256,256)),
transforms.CenterCrop((224,224))
])
if image_file is not None and secret_text is not None:
secret = ecc.encode_text([secret_text]) # (1, len)
secret = torch.from_numpy(secret).float().cuda()
# im = tform(im).unsqueeze(0).cuda() # (1,3,H,W)
stego = embed_secret(model_name, model, im, tform_emb, secret)
st.image(stego, width=display_width)
# download button
mime='image/jpeg' if ext=='jpg' else f'image/{ext}'
stego_bytes = to_bytes(stego, mime)
st.download_button(label='Download image', data=stego_bytes, file_name=f'stego.{ext}', mime=mime)
# verify secret
stego_processed = prep(Image.fromarray(stego))
secret_pred = decode_secret(model_name, model, stego_processed, tform_det)
bit_acc = (secret_pred == secret.cpu().numpy()).mean()
secret_pred = ecc.decode_text(secret_pred)[0]
status.markdown('**Secret recovery check:** ' + secret_pred, unsafe_allow_html=True)
status.markdown('**Bit accuracy:** ' + str(bit_acc), unsafe_allow_html=True)
if __name__ == '__main__':
args = parse_st_args()
app(args)
|