import json import os from threading import Thread import gradio as gr import torch from huggingface_hub import Repository from transformers import (AutoModelForCausalLM, AutoTokenizer, GenerationConfig, TextIteratorStreamer) theme = gr.themes.Monochrome( primary_hue="indigo", secondary_hue="blue", neutral_hue="slate", radius_size=gr.themes.sizes.radius_sm, font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"], ) # filesystem to save input and outputs HF_TOKEN = os.environ.get("HF_TOKEN", None) os.environ["TOKENIZERS_PARALLELISM"] = "false" # if HF_TOKEN: # repo = Repository( # local_dir="data", clone_from="philschmid/playground-prompts", use_auth_token=HF_TOKEN, repo_type="dataset" # ) # Load peft config for pre-trained checkpoint etc. device = "cuda" if torch.cuda.is_available() else "cpu" model_id = "HuggingFaceH4/llama-se-rl-ed" if device == "cpu": model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, use_auth_token=HF_TOKEN) else: # torch_dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 # model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch_dtype, device_map="auto") model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", load_in_8bit=True, use_auth_token=HF_TOKEN ) tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=HF_TOKEN) PROMPT_TEMPLATE = """Question: {prompt}\n\nAnswer: """ def generate(instruction, temperature, max_new_tokens, top_p, length_penalty): formatted_instruction = PROMPT_TEMPLATE.format(input=instruction) # COMMENT IN FOR NON STREAMING # generation_config = GenerationConfig( # do_sample=True, # top_p=top_p, # temperature=temperature, # max_new_tokens=max_new_tokens, # early_stopping=True, # length_penalty=length_penalty, # eos_token_id=tokenizer.eos_token_id, # pad_token_id=tokenizer.pad_token_id, # ) # input_ids = tokenizer( # formatted_instruction, return_tensors="pt", truncation=True, max_length=2048 # ).input_ids.cuda() # with torch.inference_mode(), torch.autocast("cuda"): # outputs = model.generate(input_ids=input_ids, generation_config=generation_config)[0] # output = tokenizer.decode(outputs.detach().cpu().numpy(), skip_special_tokens=True) # return output.split("### Antwort:\n")[1] # STREAMING BASED ON git+https://github.com/gante/transformers.git@streamer_iterator # streaming streamer = TextIteratorStreamer(tokenizer) model_inputs = tokenizer(formatted_instruction, return_tensors="pt", truncation=True, max_length=2048).to(device) generate_kwargs = dict( top_p=top_p, temperature=temperature, max_new_tokens=max_new_tokens, early_stopping=True, length_penalty=length_penalty, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id, ) t = Thread(target=model.generate, kwargs={**dict(model_inputs, streamer=streamer), **generate_kwargs}) t.start() output = "" hidden_output = "" for new_text in streamer: # skip streaming until new text is available if len(hidden_output) <= len(formatted_instruction): hidden_output += new_text continue # replace eos token if tokenizer.eos_token in new_text: new_text = new_text.replace(tokenizer.eos_token, "") output += new_text yield output # if HF_TOKEN: # save_inputs_and_outputs(formatted_instruction, output, generate_kwargs) return output # def save_inputs_and_outputs(inputs, outputs, generate_kwargs): # with open(os.path.join("data", "prompts.jsonl"), "a") as f: # json.dump({"inputs": inputs, "outputs": outputs, "generate_kwargs": generate_kwargs}, f, ensure_ascii=False) # f.write("\n") # commit_url = repo.push_to_hub() examples = [ "How do I create an array in C++ of length 5 which contains all even numbers between 1 and 10?", "How can I write a Java function to generate the nth Fibonacci number?", "How can I write a Python function that checks if a given number is a palindrome or not?", "What is the output of the following code?\n\n```\nlist1 = ['a', 'b', 'c']\nlist2 = [1, 2, 3]\n\nfor x, y in zip(list1, list2):\n print(x * y)\n```", ] with gr.Blocks(theme=theme) as demo: with gr.Column(): gr.Markdown( """

🦙🦙🦙 StackLLaMa 🦙🦙🦙

StackLLaMa is a 7 billion parameter language model that has been trained on pairs of programming questions and answers from [Stack Overflow](https://stackoverflow.com) using Reinforcement Learning from Human Feedback (RLHF) with the [TRL library](https://github.com/lvwerra/trl). For more details, check out our blog post [ADD LINK]. Type in the box below and click the button to generate answers to your most pressing coding questions 🔥! """ ) with gr.Row(): with gr.Column(scale=3): instruction = gr.Textbox(placeholder="Enter your question here", label="Question") output = gr.Textbox( interactive=False, lines=8, label="Answer", placeholder="Here will be the answer to your question", ) submit = gr.Button("Generate", variant="primary") gr.Examples(examples=examples, inputs=[instruction]) with gr.Column(scale=1): temperature = gr.Slider( label="Temperature", value=1.0, minimum=0.0, maximum=1.0, step=0.1, interactive=True, info="Higher values produce more diverse outputs", ) max_new_tokens = gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=2048, step=5, interactive=True, info="The maximum numbers of new tokens", ) top_p = gr.Slider( label="Top-p (nucleus sampling)", value=0.9, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample fewer low-probability tokens", ) length_penalty = gr.Slider( label="Length penalty", value=1.0, minimum=-10.0, maximum=10.0, step=0.1, interactive=True, info="> 0 longer, < 0 shorter", ) submit.click(generate, inputs=[instruction, temperature, max_new_tokens, top_p, length_penalty], outputs=[output]) instruction.submit( generate, inputs=[instruction, temperature, max_new_tokens, top_p, length_penalty], outputs=[output] ) demo.queue() demo.launch()