Spaces:
Runtime error
Runtime error
File size: 5,903 Bytes
9d55eb4 a9e7d31 5d26322 a9e7d31 ff6dd35 9d55eb4 309335b 1fb2014 b7f7d63 9d55eb4 a9e7d31 ff6dd35 00a86b9 a9e7d31 9d55eb4 b7f7d63 9d55eb4 a9e7d31 da700a9 a9e7d31 9d55eb4 ff6dd35 a9e7d31 9d55eb4 9f1411e da700a9 a9e7d31 b7f7d63 a9e7d31 9d55eb4 b0042a5 b7f7d63 f548568 b7f7d63 a9e7d31 9d55eb4 a9e7d31 b7f7d63 9d55eb4 a9e7d31 ff6dd35 da700a9 30dcff9 ff6dd35 a9e7d31 97f74a7 309335b 97f74a7 309335b a9e7d31 5d26322 ff6dd35 5d26322 ff6dd35 a9e7d31 309335b aeb451a 309335b a9e7d31 97f74a7 a9e7d31 309335b a9e7d31 30dcff9 b33cc95 aeb451a a9e7d31 6e3d5eb a9e7d31 27c60ec a9e7d31 da700a9 a9e7d31 6e3d5eb da700a9 a9e7d31 da700a9 a9e7d31 b0042a5 da700a9 b0042a5 a9e7d31 b0042a5 a9e7d31 b0042a5 309335b a9e7d31 f15167a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import json
import os
import gradio as gr
from huggingface_hub import Repository
from text_generation import Client
from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css
HF_TOKEN = os.environ.get("TRL_TOKEN", None)
API_URL = os.environ.get("API_URL")
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_sm,
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)
if HF_TOKEN:
repo = Repository(
local_dir="data", clone_from="trl-lib/stack-llama-prompts", use_auth_token=HF_TOKEN, repo_type="dataset"
)
repo.git_pull()
client = Client(
API_URL,
headers={"Authorization": f"Bearer {HF_TOKEN}"},
)
PROMPT_TEMPLATE = """Question: {prompt}\n\nAnswer:"""
def save_inputs_and_outputs(inputs, outputs, generate_kwargs):
with open(os.path.join("data", "prompts.jsonl"), "a") as f:
json.dump({"inputs": inputs, "outputs": outputs, "generate_kwargs": generate_kwargs}, f, ensure_ascii=False)
f.write("\n")
commit_url = repo.push_to_hub()
def generate(instruction, temperature=0.9, max_new_tokens=256, top_p=0.95, top_k=100):
formatted_instruction = PROMPT_TEMPLATE.format(prompt=instruction)
temperature = float(temperature)
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
top_k=top_k,
do_sample=True,
truncate=999,
seed=42,
stop_sequences=["</s>"],
)
stream = client.generate_stream(
formatted_instruction,
**generate_kwargs,
)
output = ""
for response in stream:
output += response.token.text
yield output
if HF_TOKEN:
print("Pushing prompt and completion to the Hub")
save_inputs_and_outputs(formatted_instruction, output, generate_kwargs)
return output
examples = [
"A llama is in my lawn. How do I get rid of him?",
"How do I create an array in C++ which contains all even numbers between 1 and 10?",
"How can I sort a list in Python?",
"How can I write a Java function to generate the nth Fibonacci number?",
"How many helicopters can a llama eat in one sitting?",
]
def process_example(args):
for x in generate(args):
pass
return x
css = ".generating {visibility: hidden}" + share_btn_css
with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
with gr.Column():
gr.Markdown(
"""<h1><center>🦙🦙🦙 StackLLaMa 🦙🦙🦙</center></h1>
StackLLaMa is a 7 billion parameter language model that has been trained on pairs of questions and answers from [Stack Exchange](https://stackexchange.com) using Reinforcement Learning from Human Feedback with the [TRL library](https://github.com/lvwerra/trl). For more details, check out our [blog post](https://huggingface.co/blog/stackllama).
Type in the box below and click the button to generate answers to your most pressing questions 🔥!
**Note:** we are collecting your prompts and model completions for research purposes.
"""
)
with gr.Row():
with gr.Column(scale=3):
instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input")
with gr.Box():
gr.Markdown("**Answer**")
output = gr.Markdown(elem_id="q-output")
submit = gr.Button("Generate", variant="primary")
gr.Examples(
examples=examples,
inputs=[instruction],
cache_examples=True,
fn=process_example,
outputs=[output],
)
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, visible=True)
loading_icon = gr.HTML(loading_icon_html, visible=True)
share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
with gr.Column(scale=1):
temperature = gr.Slider(
label="Temperature",
value=0.8,
minimum=0.01,
maximum=2.0,
step=0.1,
interactive=True,
info="Higher values produce more diverse outputs",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=2048,
step=4,
interactive=True,
info="The maximum numbers of new tokens",
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.95,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
top_k = gr.Slider(
label="Top-k",
value=40,
minimum=0,
maximum=100,
step=2,
interactive=True,
info="Sample from top-k tokens",
)
submit.click(generate, inputs=[instruction, temperature, max_new_tokens, top_p, top_k], outputs=[output])
instruction.submit(generate, inputs=[instruction, temperature, max_new_tokens, top_p, top_k], outputs=[output])
share_button.click(None, [], [], _js=share_js)
demo.queue(concurrency_count=16).launch(debug=True)
|