import streamlit as st import json from autogluon.multimodal import MultiModalPredictor import pandas as pd from geopy.geocoders import GoogleV3 import os import tempfile st.set_page_config(layout="wide") if "price_text" not in st.session_state: st.session_state.price_text = 0 @st.cache_resource def load_geocoder(): return GoogleV3(api_key=os.environ.get("GOOGLE_MAP_API_KEY")) geocoder = load_geocoder() @st.cache_resource def load_mm_text_no_price_model(): return MultiModalPredictor.load("models/mm-text-no-price/", verbosity=0) mm_text_no_price_predictor = load_mm_text_no_price_model() @st.cache_resource def load_city_map(): return json.load(open("city-map.json")) city_map = load_city_map() @st.cache_resource def load_city_district_map(): return json.load(open("city-district-map.json")) city_district_map = load_city_district_map() CERT_STATUS = pd.CategoricalDtype( categories=["Không có", "hợp đồng", "sổ đỏ / sổ hồng"], ordered=False ) DIRECTION = pd.CategoricalDtype( categories=[ "Không có", "Tây - Nam", "Đông - Nam", "Đông - Bắc", "Tây - Bắc", "Nam", "Tây", "Bắc", "Đông", ], ordered=False, ) CITY = pd.CategoricalDtype(categories=city_map.keys(), ordered=False) DISTRICT = pd.CategoricalDtype( categories=sum([list(map(int, v.keys())) for v in city_district_map.values()], []), ordered=False, ) location_options = st.columns([1, 1, 2, 1, 1]) with location_options[0]: city = st.selectbox( "Choose city", options=city_map.items(), format_func=lambda x: x[1] ) with location_options[1]: district = st.selectbox( "Choose district", options=city_district_map[city[0]].items(), format_func=lambda x: x[1], ) with location_options[2]: location = st.text_input("Enter precise location") location = (location + ", " if location else "") + city[1] + ", " + district[1] geocode_result = geocoder.geocode(query=location, region="vn", language="vi") latitude = geocode_result.latitude longitude = geocode_result.longitude with location_options[3]: latitude = st.number_input( "Enter latitude", value=latitude, step=1e-8, format="%.7f" ) with location_options[4]: longitude = st.number_input( "Enter longitude", value=longitude, step=1e-8, format="%.7f" ) numerical_options = st.columns(6) with numerical_options[0]: area = st.number_input("Area (m2)", min_value=1.0) with numerical_options[1]: bedrooms = st.number_input("Number of bedrooms", min_value=1, value=1) with numerical_options[2]: bathrooms = st.number_input("Number of bathrooms", min_value=1, value=1) with numerical_options[3]: floors = st.number_input("Number of floors", min_value=1, value=1) with numerical_options[4]: front_width = st.number_input( "Front width, leave 0 for N/A", min_value=0.0, value=0.0, step=0.1 ) with numerical_options[5]: road_width = st.number_input( "Road width, leave 0 for N/A", min_value=0.0, value=0.0, step=0.1 ) cat_time_columns = st.columns(4) with cat_time_columns[0]: timestamp = st.date_input("Date posted", format="DD/MM/YYYY") with cat_time_columns[1]: cert_status = st.selectbox("Certification status", options=CERT_STATUS.categories) with cat_time_columns[2]: direction = st.selectbox("Direction", options=DIRECTION.categories) with cat_time_columns[3]: balcony_direction = st.selectbox("Balcony direction", options=DIRECTION.categories) description = st.text_area("Description") title = description.split(".", maxsplit=1)[0] uploaded_image = st.file_uploader("Upload an image") image_tmp = None if uploaded_image: image_tmp = tempfile.NamedTemporaryFile(suffix=uploaded_image.name) image_tmp.write(uploaded_image.read()) print(image_tmp.name) df = pd.DataFrame( [ { "Title": title, "Area": area, "Location": location, "Time stamp": timestamp, "Certification status": cert_status, "Direction": direction, "Bedrooms": bedrooms, "Bathrooms": bathrooms, "Front width": front_width or float("nan"), "Floor": floors, "Description": description, "Image URL": image_tmp.name if image_tmp else None, "Road width": road_width or float("nan"), "City_code": city[0], "DistrictId": int(district[0]), "Lattitude": latitude, "Longitude": longitude, "Balcony_Direction": balcony_direction, } ] ).astype( { "Title": "str", "Area": "float", "Location": "str", "Time stamp": "datetime64[ns]", "Certification status": CERT_STATUS, "Direction": DIRECTION, "Bedrooms": "int", "Bathrooms": "int", "Front width": "float", "Floor": "int", "Description": "str", "Image URL": "str", "Road width": "float", "City_code": CITY, "DistrictId": DISTRICT, "Lattitude": "float", "Longitude": "float", "Balcony_Direction": DIRECTION, } ) if st.button("Get estimated price with text"): st.session_state.price_text = mm_text_no_price_predictor.predict( df, as_pandas=False ).item() st.text( "Estimated price: {0:,} VND".format(int(st.session_state.price_text * 1e6)) if st.session_state.price_text else "No price estimated." )