File size: 5,561 Bytes
fadd436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import streamlit as st
import json
from autogluon.multimodal import MultiModalPredictor
import pandas as pd
from geopy.geocoders import GoogleV3
import os
import tempfile
st.set_page_config(layout="wide")
if "price_text" not in st.session_state:
st.session_state.price_text = 0
@st.cache_resource
def load_geocoder():
return GoogleV3(api_key=os.environ.get("GOOGLE_MAP_API_KEY"))
geocoder = load_geocoder()
@st.cache_resource
def load_mm_text_no_price_model():
return MultiModalPredictor.load("models/mm-text-no-price/", verbosity=0)
mm_text_no_price_predictor = load_mm_text_no_price_model()
@st.cache_resource
def load_city_map():
return json.load(open("city-map.json"))
city_map = load_city_map()
@st.cache_resource
def load_city_district_map():
return json.load(open("city-district-map.json"))
city_district_map = load_city_district_map()
CERT_STATUS = pd.CategoricalDtype(
categories=["Không có", "hợp đồng", "sổ đỏ / sổ hồng"], ordered=False
)
DIRECTION = pd.CategoricalDtype(
categories=[
"Không có",
"Tây - Nam",
"Đông - Nam",
"Đông - Bắc",
"Tây - Bắc",
"Nam",
"Tây",
"Bắc",
"Đông",
],
ordered=False,
)
CITY = pd.CategoricalDtype(categories=city_map.keys(), ordered=False)
DISTRICT = pd.CategoricalDtype(
categories=sum([list(map(int, v.keys())) for v in city_district_map.values()], []),
ordered=False,
)
location_options = st.columns([1, 1, 2, 1, 1])
with location_options[0]:
city = st.selectbox(
"Choose city", options=city_map.items(), format_func=lambda x: x[1]
)
with location_options[1]:
district = st.selectbox(
"Choose district",
options=city_district_map[city[0]].items(),
format_func=lambda x: x[1],
)
with location_options[2]:
location = st.text_input("Enter precise location")
location = (location + ", " if location else "") + city[1] + ", " + district[1]
geocode_result = geocoder.geocode(query=location, region="vn", language="vi")
latitude = geocode_result.latitude
longitude = geocode_result.longitude
with location_options[3]:
latitude = st.number_input(
"Enter latitude", value=latitude, step=1e-8, format="%.7f"
)
with location_options[4]:
longitude = st.number_input(
"Enter longitude", value=longitude, step=1e-8, format="%.7f"
)
numerical_options = st.columns(6)
with numerical_options[0]:
area = st.number_input("Area (m2)", min_value=1.0)
with numerical_options[1]:
bedrooms = st.number_input("Number of bedrooms", min_value=1, value=1)
with numerical_options[2]:
bathrooms = st.number_input("Number of bathrooms", min_value=1, value=1)
with numerical_options[3]:
floors = st.number_input("Number of floors", min_value=1, value=1)
with numerical_options[4]:
front_width = st.number_input(
"Front width, leave 0 for N/A", min_value=0.0, value=0.0, step=0.1
)
with numerical_options[5]:
road_width = st.number_input(
"Road width, leave 0 for N/A", min_value=0.0, value=0.0, step=0.1
)
cat_time_columns = st.columns(4)
with cat_time_columns[0]:
timestamp = st.date_input("Date posted", format="DD/MM/YYYY")
with cat_time_columns[1]:
cert_status = st.selectbox("Certification status", options=CERT_STATUS.categories)
with cat_time_columns[2]:
direction = st.selectbox("Direction", options=DIRECTION.categories)
with cat_time_columns[3]:
balcony_direction = st.selectbox("Balcony direction", options=DIRECTION.categories)
description = st.text_area("Description")
title = description.split(".", maxsplit=1)[0]
uploaded_image = st.file_uploader("Upload an image")
image_tmp = None
if uploaded_image:
image_tmp = tempfile.NamedTemporaryFile(suffix=uploaded_image.name)
image_tmp.write(uploaded_image.read())
print(image_tmp.name)
df = pd.DataFrame(
[
{
"Title": title,
"Area": area,
"Location": location,
"Time stamp": timestamp,
"Certification status": cert_status,
"Direction": direction,
"Bedrooms": bedrooms,
"Bathrooms": bathrooms,
"Front width": front_width or float("nan"),
"Floor": floors,
"Description": description,
"Image URL": image_tmp.name if image_tmp else None,
"Road width": road_width or float("nan"),
"City_code": city[0],
"DistrictId": int(district[0]),
"Lattitude": latitude,
"Longitude": longitude,
"Balcony_Direction": balcony_direction,
}
]
).astype(
{
"Title": "str",
"Area": "float",
"Location": "str",
"Time stamp": "datetime64[ns]",
"Certification status": CERT_STATUS,
"Direction": DIRECTION,
"Bedrooms": "int",
"Bathrooms": "int",
"Front width": "float",
"Floor": "int",
"Description": "str",
"Image URL": "str",
"Road width": "float",
"City_code": CITY,
"DistrictId": DISTRICT,
"Lattitude": "float",
"Longitude": "float",
"Balcony_Direction": DIRECTION,
}
)
if st.button("Get estimated price with text"):
st.session_state.price_text = mm_text_no_price_predictor.predict(
df, as_pandas=False
).item()
st.text(
"Estimated price: {0:,} VND".format(int(st.session_state.price_text * 1e6))
if st.session_state.price_text
else "No price estimated."
)
|