Spaces:
Running
Running
tori29umai
commited on
Commit
·
ec4bc2b
1
Parent(s):
3c53cb7
Add application file
Browse files
app.py
CHANGED
@@ -6,36 +6,157 @@ import os
|
|
6 |
from collections import defaultdict
|
7 |
from skimage.color import deltaE_ciede2000, rgb2lab
|
8 |
|
9 |
-
|
10 |
-
def XDoG_filter(image, kernel_size=0, sigma=1.4, k_sigma=1.6, epsilon=0, phi=10, gamma=0.98):
|
11 |
-
epsilon /= 255
|
12 |
g1 = cv2.GaussianBlur(image, (kernel_size, kernel_size), sigma)
|
13 |
g2 = cv2.GaussianBlur(image, (kernel_size, kernel_size), sigma * k_sigma)
|
14 |
-
|
|
|
|
|
|
|
|
|
15 |
dog /= dog.max()
|
16 |
e = 1 + np.tanh(phi * (dog - epsilon))
|
17 |
e[e >= 1] = 1
|
18 |
return (e * 255).astype('uint8')
|
19 |
|
20 |
-
# 画像を二値化する関数
|
21 |
def binarize_image(image):
|
22 |
_, binarized = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
23 |
return binarized
|
24 |
|
25 |
-
|
26 |
def process_XDoG(image_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
|
28 |
-
xdog_image = XDoG_filter(image)
|
29 |
binarized_image = binarize_image(xdog_image)
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# Gradioインターフェース用のメイン関数
|
33 |
def gradio_interface(image):
|
34 |
image_path = 'temp_input_image.jpg'
|
35 |
image.save(image_path)
|
|
|
36 |
lineart = process_XDoG(image_path).convert('L')
|
37 |
-
|
38 |
-
return
|
39 |
|
40 |
# Gradioアプリを設定し、起動する
|
41 |
iface = gr.Interface(
|
|
|
6 |
from collections import defaultdict
|
7 |
from skimage.color import deltaE_ciede2000, rgb2lab
|
8 |
|
9 |
+
def DoG_filter(image, kernel_size=0, sigma=1.0, k_sigma=2.0, gamma=1.5):
|
|
|
|
|
10 |
g1 = cv2.GaussianBlur(image, (kernel_size, kernel_size), sigma)
|
11 |
g2 = cv2.GaussianBlur(image, (kernel_size, kernel_size), sigma * k_sigma)
|
12 |
+
return g1 - gamma * g2
|
13 |
+
|
14 |
+
def XDoG_filter(image, kernel_size=0, sigma=1.4, k_sigma=1.6, epsilon=0, phi=10, gamma=0.98):
|
15 |
+
epsilon /= 255
|
16 |
+
dog = DoG_filter(image, kernel_size, sigma, k_sigma, gamma)
|
17 |
dog /= dog.max()
|
18 |
e = 1 + np.tanh(phi * (dog - epsilon))
|
19 |
e[e >= 1] = 1
|
20 |
return (e * 255).astype('uint8')
|
21 |
|
|
|
22 |
def binarize_image(image):
|
23 |
_, binarized = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
24 |
return binarized
|
25 |
|
26 |
+
|
27 |
def process_XDoG(image_path):
|
28 |
+
kernel_size=0
|
29 |
+
sigma=1.4
|
30 |
+
k_sigma=1.6
|
31 |
+
epsilon=0
|
32 |
+
phi=10
|
33 |
+
gamma=0.98
|
34 |
+
|
35 |
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
|
36 |
+
xdog_image = XDoG_filter(image, kernel_size, sigma, k_sigma, epsilon, phi, gamma)
|
37 |
binarized_image = binarize_image(xdog_image)
|
38 |
+
final_image = Image.fromarray(binarized_image)
|
39 |
+
return final_image
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
def replace_color(image, color_1, blur_radius=2):
|
44 |
+
data = np.array(image)
|
45 |
+
original_shape = data.shape
|
46 |
+
data = data.reshape(-1, 4)
|
47 |
+
color_1 = np.array(color_1)
|
48 |
+
matches = np.all(data[:, :3] == color_1, axis=1)
|
49 |
+
nochange_count = 0
|
50 |
+
mask = np.zeros(data.shape[0], dtype=bool)
|
51 |
+
|
52 |
+
while np.any(matches):
|
53 |
+
new_matches = np.zeros_like(matches)
|
54 |
+
match_num = np.sum(matches)
|
55 |
+
for i in tqdm(range(len(data))):
|
56 |
+
if matches[i]:
|
57 |
+
x, y = divmod(i, original_shape[1])
|
58 |
+
neighbors = [
|
59 |
+
(x, y-1), (x, y+1), (x-1, y), (x+1, y)
|
60 |
+
]
|
61 |
+
valid_neighbors = []
|
62 |
+
for nx, ny in neighbors:
|
63 |
+
if 0 <= nx < original_shape[0] and 0 <= ny < original_shape[1]:
|
64 |
+
ni = nx * original_shape[1] + ny
|
65 |
+
if not np.all(data[ni, :3] == color_1, axis=0):
|
66 |
+
valid_neighbors.append(data[ni, :3])
|
67 |
+
if valid_neighbors:
|
68 |
+
new_color = np.mean(valid_neighbors, axis=0).astype(np.uint8)
|
69 |
+
data[i, :3] = new_color
|
70 |
+
data[i, 3] = 255
|
71 |
+
mask[i] = True
|
72 |
+
else:
|
73 |
+
new_matches[i] = True
|
74 |
+
matches = new_matches
|
75 |
+
if match_num == np.sum(matches):
|
76 |
+
nochange_count += 1
|
77 |
+
if nochange_count > 5:
|
78 |
+
break
|
79 |
+
|
80 |
+
data = data.reshape(original_shape)
|
81 |
+
mask = mask.reshape(original_shape[:2])
|
82 |
+
|
83 |
+
result_image = Image.fromarray(data, 'RGBA')
|
84 |
+
blurred_image = result_image.filter(ImageFilter.GaussianBlur(radius=blur_radius))
|
85 |
+
blurred_data = np.array(blurred_image)
|
86 |
+
|
87 |
+
np.copyto(data, blurred_data, where=mask[..., None])
|
88 |
+
|
89 |
+
return Image.fromarray(data, 'RGBA')
|
90 |
+
|
91 |
+
def generate_distant_colors(consolidated_colors, distance_threshold):
|
92 |
+
consolidated_lab = [rgb2lab(np.array([color], dtype=np.float32) / 255.0).reshape(3) for color, _ in consolidated_colors]
|
93 |
+
max_attempts = 10000
|
94 |
+
for _ in range(max_attempts):
|
95 |
+
random_rgb = np.random.randint(0, 256, size=3)
|
96 |
+
random_lab = rgb2lab(np.array([random_rgb], dtype=np.float32) / 255.0).reshape(3)
|
97 |
+
if all(deltaE_ciede2000(base_color_lab, random_lab) > distance_threshold for base_color_lab in consolidated_lab):
|
98 |
+
return tuple(random_rgb)
|
99 |
+
return (128, 128, 128)
|
100 |
+
|
101 |
+
def consolidate_colors(major_colors, threshold):
|
102 |
+
colors_lab = [rgb2lab(np.array([[color]], dtype=np.float32)/255.0).reshape(3) for color, _ in major_colors]
|
103 |
+
i = 0
|
104 |
+
while i < len(colors_lab):
|
105 |
+
j = i + 1
|
106 |
+
while j < len(colors_lab):
|
107 |
+
if deltaE_ciede2000(colors_lab[i], colors_lab[j]) < threshold:
|
108 |
+
if major_colors[i][1] >= major_colors[j][1]:
|
109 |
+
major_colors[i] = (major_colors[i][0], major_colors[i][1] + major_colors[j][1])
|
110 |
+
major_colors.pop(j)
|
111 |
+
colors_lab.pop(j)
|
112 |
+
else:
|
113 |
+
major_colors[j] = (major_colors[j][0], major_colors[j][1] + major_colors[i][1])
|
114 |
+
major_colors.pop(i)
|
115 |
+
colors_lab.pop(i)
|
116 |
+
continue
|
117 |
+
j += 1
|
118 |
+
i += 1
|
119 |
+
return major_colors
|
120 |
+
|
121 |
+
def get_major_colors(image, threshold_percentage=0.01):
|
122 |
+
if image.mode != 'RGB':
|
123 |
+
image = image.convert('RGB')
|
124 |
+
color_count = defaultdict(int)
|
125 |
+
for pixel in image.getdata():
|
126 |
+
color_count[pixel] += 1
|
127 |
+
total_pixels = image.width * image.height
|
128 |
+
major_colors = [(color, count) for color, count in color_count.items() if (count / total_pixels) >= threshold_percentage]
|
129 |
+
return major_colors
|
130 |
+
|
131 |
+
def line_color(image, mask, new_color):
|
132 |
+
data = np.array(image)
|
133 |
+
data[mask, :3] = new_color
|
134 |
+
return Image.fromarray(data, 'RGBA')
|
135 |
+
|
136 |
+
|
137 |
+
def main(image, lineart):
|
138 |
+
lineart = lineart.point(lambda x: 0 if x < 200 else 255)
|
139 |
+
lineart = ImageOps.invert(lineart)
|
140 |
+
kernel = np.ones((3, 3), np.uint8)
|
141 |
+
lineart = cv2.dilate(np.array(lineart), kernel, iterations=1)
|
142 |
+
lineart = Image.fromarray(lineart)
|
143 |
+
mask = np.array(lineart) == 255
|
144 |
+
major_colors = get_major_colors(image, threshold_percentage=0.05)
|
145 |
+
major_colors = consolidate_colors(major_colors, 10)
|
146 |
+
new_color_1 = generate_distant_colors(major_colors, 100)
|
147 |
+
filled_image = line_color(image, mask, new_color_1)
|
148 |
+
replace_color_image = replace_color(filled_image, new_color_1, 2).convert('RGB')
|
149 |
+
return replace_color_image
|
150 |
+
|
151 |
|
152 |
# Gradioインターフェース用のメイン関数
|
153 |
def gradio_interface(image):
|
154 |
image_path = 'temp_input_image.jpg'
|
155 |
image.save(image_path)
|
156 |
+
image = Image.open(image_path).convert('RGBA')
|
157 |
lineart = process_XDoG(image_path).convert('L')
|
158 |
+
replace_color_image = main(image, lineart)
|
159 |
+
return replace_color_image
|
160 |
|
161 |
# Gradioアプリを設定し、起動する
|
162 |
iface = gr.Interface(
|