import numpy as np import pandas as pd # type: ignore import os import keras import tensorflow as tf from tensorflow.keras.models import load_model import pymongo import streamlit as st from sentence_transformers import SentenceTransformer from langchain.prompts import ChatPromptTemplate from langchain_openai import ChatOpenAI from langchain.schema.runnable import RunnablePassthrough from langchain.schema.output_parser import StrOutputParser from langchain_core.messages import HumanMessage, SystemMessage from PIL import Image import json st.set_page_config( page_title="Food Chain", page_icon="🍴" ) os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY") mongo_uri = os.getenv("MONGO_URI_RAG_RECIPE") @st.cache_resource def loadEmbedding(): embedding = SentenceTransformer("thenlper/gte-large") return embedding embedding = loadEmbedding() def getEmbedding(text): if not text.strip(): print("Text was empty") return [] encoded = embedding.encode(text) return encoded.tolist() # Connect to MongoDB def get_mongo_client(mongo_uri): try: client = pymongo.MongoClient(mongo_uri) print("Connection to MongoDB successful") return client except pymongo.errors.ConnectionFailure as e: print(f"Connection failed: {e}") return None if not mongo_uri: print("MONGO_URI not set in env") mongo_client = get_mongo_client(mongo_uri) mongo_db = mongo_client['recipes'] mongo_collection = mongo_db['recipesCollection'] def vector_search(user_query, collection): query_embedding = getEmbedding(user_query) if query_embedding is None: return "Invalid query or embedding gen failed" vector_search_stage = { "$vectorSearch": { "index": "vector_index", "queryVector": query_embedding, "path": "embedding", "numCandidates": 150, # Number of candidate matches to consider "limit": 4 # Return top 4 matches } } unset_stage = { "$unset": "embedding" # Exclude the 'embedding' field from the results } project_stage = { "$project": { "_id": 0, # Exclude the _id field "name": 1, "minutes": 1, "tags": 1, "n_steps": 1, "description": 1, "ingredients": 1, "n_ingredients": 1, "formatted_nutrition": 1, "formatted_steps": 1, "score": { "$meta": "vectorSearchScore" # Include the search score } } } pipeline = [vector_search_stage, unset_stage, project_stage] results = mongo_collection.aggregate(pipeline) return list(results) def mongo_retriever(query): documents = vector_search(query, mongo_collection) return documents template = """ You are an assistant for generating results based on user questions. Use the provided context to generate a result based on the following JSON format: {{ "name": "Recipe Name", "minutes": 0, "tags": [ "tag1", "tag2", "tag3" ], "n_steps": 0, "description": "A GENERAL description of the recipe goes here.", "ingredients": [ "ingredient1", "ingredient2", "ingredient3" ], "n_ingredients": 0, "formatted_nutrition": [ "Calorie : per serving", "Total Fat : % daily value", "Sugar : % daily value", "Sodium : % daily value", "Protein : % daily value", "Saturated Fat : % daily value", "Total Carbohydrate : % daily value" ], "formatted_steps": [ "1. Step 1 of the recipe.", "2. Step 2 of the recipe.", "3. Step 3 of the recipe." ] }} Instructions: 1. Focus on the user's specific request and avoid irrelevant ingredients or approaches. 2. Do not return anything other than the JSON. 3. If the answer is unclear or the context does not fully address the prompt, return [] 4. Base the response on simple, healthy, and accessible ingredients and techniques. 5. Rewrite the description in third person Context: {context} When choosing a recipe from the context, FOLLOW these instructions: 1. The recipe should be makeable from scratch, using only proper ingredients and not other dishes or pre-made recipes Question: {question} """ custom_rag_prompt = ChatPromptTemplate.from_template(template) llm = ChatOpenAI( model_name="gpt-3.5-turbo", temperature=0.2) rag_chain = ( {"context": mongo_retriever, "question": RunnablePassthrough()} | custom_rag_prompt | llm | StrOutputParser() ) def get_response(query): return rag_chain.invoke(query) print("HELLO WORLD") st.title("RESSSSULTS")