tonyliu404 commited on
Commit
91cc9f1
·
verified ·
1 Parent(s): 40aa381

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -18,8 +18,6 @@ import matplotlib.pyplot as plt
18
  from matplotlib.colors import LinearSegmentedColormap
19
  import textwrap
20
  import plotly.graph_objects as go
21
- from tensorflow.keras.applications.efficientnet import preprocess_input
22
-
23
 
24
  st.set_page_config(
25
  page_title="Food Chain",
@@ -232,17 +230,19 @@ class_names = [
232
 
233
  def classifyImage(input_image):
234
  input_image = input_image.resize((img_size, img_size))
235
- input_array = tf.keras.utils.img_to_array(input_image)
236
 
237
  # Add a batch dimension
238
  input_array = tf.expand_dims(input_array, 0) # (1, 224, 224, 3)
239
- input_array = preprocess_input(input_array) #TESTING
240
 
241
  predictions = model.predict(input_array)[0]
242
  print(f"Predictions: {predictions}")
243
  predictions = tf.nn.softmax(predictions).numpy() #TESTING
244
  print(f"Predictions AFTER SOFTMAX: {predictions}")
245
-
 
 
 
246
  # Sort predictions to get top 5
247
  top_indices = np.argsort(predictions)[-5:][::-1]
248
 
 
18
  from matplotlib.colors import LinearSegmentedColormap
19
  import textwrap
20
  import plotly.graph_objects as go
 
 
21
 
22
  st.set_page_config(
23
  page_title="Food Chain",
 
230
 
231
  def classifyImage(input_image):
232
  input_image = input_image.resize((img_size, img_size))
233
+ input_array = tf.keras.utils.img_to_array(input_image) / 255.0
234
 
235
  # Add a batch dimension
236
  input_array = tf.expand_dims(input_array, 0) # (1, 224, 224, 3)
 
237
 
238
  predictions = model.predict(input_array)[0]
239
  print(f"Predictions: {predictions}")
240
  predictions = tf.nn.softmax(predictions).numpy() #TESTING
241
  print(f"Predictions AFTER SOFTMAX: {predictions}")
242
+
243
+ probability_sum = predictions.sum() * 100
244
+ print(f"Sum of predictions (as percentages): {probability_sum:.2f}%")
245
+
246
  # Sort predictions to get top 5
247
  top_indices = np.argsort(predictions)[-5:][::-1]
248