FoodChain / app.py
tonyliu404's picture
Update app.py
73e5d20 verified
raw
history blame
15.3 kB
import numpy as np
import pandas as pd # type: ignore
import os
import keras
import tensorflow as tf
from tensorflow.keras.models import load_model
import pymongo
import streamlit as st
from sentence_transformers import SentenceTransformer
from langchain.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
from langchain_core.messages import HumanMessage, SystemMessage
from PIL import Image
import json
st.set_page_config(
page_title="Food Chain",
page_icon="🍴"
)
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
mongo_uri = os.getenv("MONGO_URI_RAG_RECIPE")
@st.cache_resource
def loadEmbedding():
embedding = SentenceTransformer("thenlper/gte-large")
return embedding
embedding = loadEmbedding()
def getEmbedding(text):
if not text.strip():
print("Text was empty")
return []
encoded = embedding.encode(text)
return encoded.tolist()
# Connect to MongoDB
def get_mongo_client(mongo_uri):
try:
client = pymongo.MongoClient(mongo_uri)
print("Connection to MongoDB successful")
return client
except pymongo.errors.ConnectionFailure as e:
print(f"Connection failed: {e}")
return None
if not mongo_uri:
print("MONGO_URI not set in env")
mongo_client = get_mongo_client(mongo_uri)
mongo_db = mongo_client['recipes']
mongo_collection = mongo_db['recipesCollection']
def vector_search(user_query, collection):
query_embedding = getEmbedding(user_query)
if query_embedding is None:
return "Invalid query or embedding gen failed"
vector_search_stage = {
"$vectorSearch": {
"index": "vector_index",
"queryVector": query_embedding,
"path": "embedding",
"numCandidates": 150, # Number of candidate matches to consider
"limit": 4 # Return top 4 matches
}
}
unset_stage = {
"$unset": "embedding" # Exclude the 'embedding' field from the results
}
project_stage = {
"$project": {
"_id": 0, # Exclude the _id field
"name": 1,
"minutes": 1,
"tags": 1,
"n_steps": 1,
"description": 1,
"ingredients": 1,
"n_ingredients": 1,
"formatted_nutrition": 1,
"formatted_steps": 1,
"score": {
"$meta": "vectorSearchScore" # Include the search score
}
}
}
pipeline = [vector_search_stage, unset_stage, project_stage]
results = mongo_collection.aggregate(pipeline)
return list(results)
def mongo_retriever(query):
print("mongo retriever query: ", query)
documents = vector_search(query, mongo_collection)
print("DOCuMENTS RETRIEVED: ", documents)
return documents
template = """
You are an assistant for generating results based on user questions.
Use the provided context to generate a result based on the following JSON format:
{{
"name": "Recipe Name",
"minutes": 0,
"tags": [
"tag1",
"tag2",
"tag3"
],
"n_steps": 0,
"description": "A GENERAL description of the recipe goes here.",
"ingredients": [
"ingredient1",
"ingredient2",
"ingredient3"
],
"n_ingredients": 0,
"formatted_nutrition": [
"Calorie : per serving",
"Total Fat : % daily value",
"Sugar : % daily value",
"Sodium : % daily value",
"Protein : % daily value",
"Saturated Fat : % daily value",
"Total Carbohydrate : % daily value"
],
"formatted_steps": [
"1. Step 1 of the recipe.",
"2. Step 2 of the recipe.",
"3. Step 3 of the recipe."
]
}}
Instructions:
1. Focus on the user's specific request and avoid irrelevant ingredients or approaches.
2. Do not return anything other than the JSON.
3. If the answer is unclear or the context does not fully address the prompt, return [].
4. Base the response on simple, healthy, and accessible ingredients and techniques.
5. Rewrite the description in third person
Context: {context}
When choosing a recipe from the context, FOLLOW these instructions:
1. The recipe should be makeable from scratch, using only proper ingredients and not other dishes or pre-made recipes
2. If the recipes from the context makes sense but do not match {question}, generate an amazing recipe for {question} following the above template.
3. If context does not match {question} at all, return []
Question: {question}
"""
custom_rag_prompt = ChatPromptTemplate.from_template(template)
llm = ChatOpenAI(
model_name="gpt-3.5-turbo",
temperature=0.2)
rag_chain = (
{"context": mongo_retriever, "question": RunnablePassthrough()}
| custom_rag_prompt
| llm
| StrOutputParser()
)
def get_response(query):
temp = rag_chain.invoke(query)
print("RAG RESPONSE TEMP: ", temp)
return temp
##############################################
# Classifier
img_size = 224
@st.cache_resource
def loadModel():
model = load_model('efficientnet-fine-d1.keras')
return model
model = loadModel()
class_names = [
"apple_pie", "baby_back_ribs", "baklava", "beef_carpaccio", "beef_tartare", "beet_salad",
"beignets", "bibimbap", "bread_pudding", "breakfast_burrito", "bruschetta", "caesar_salad",
"cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheese_plate", "cheesecake", "chicken_curry",
"chicken_quesadilla", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder",
"club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "deviled_eggs", "donuts",
"dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras",
"french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt",
"garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "grilled_salmon", "guacamole", "gyoza",
"hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna",
"lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels",
"nachos", "omelette", "onion_rings", "oysters", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck",
"pho", "pizza", "pork_chop", "poutine", "prime_rib", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake",
"risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "spaghetti_bolognese",
"spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu",
"tuna_tartare", "waffles"
]
def classifyImage(input_image):
input_image = input_image.resize((img_size, img_size))
input_array = tf.keras.utils.img_to_array(input_image)
# Add a batch dimension
input_array = tf.expand_dims(input_array, 0) # (1, 224, 224, 3)
predictions = model.predict(input_array)[0]
print(f"Predictions: {predictions}")
# Sort predictions to get top 5
top_indices = np.argsort(predictions)[-5:][::-1]
# Prepare the top 5 predictions with their class names and percentages
top_predictions = [(class_names[i], predictions[i] * 100) for i in top_indices]
for i, (class_name, confidence) in enumerate(top_predictions, 1):
print(f"{i}. Predicted {class_name} with {confidence:.2f}% Confidence")
return top_predictions
def capitalize_after_number(input_string):
# Split the string on the first period
if ". " in input_string:
num, text = input_string.split(". ", 1)
return f"{num}. {text.capitalize()}"
return input_string
##############################################
#for displaying RAG recipe response
def display_response(response):
"""
Function to format a JSON response into Streamlit's `st.write()` format.
"""
if response == "[]":
st.write("No recipes found :(")
return
if isinstance(response, str):
# Convert JSON string to dictionary if necessary
response = json.loads(response)
st.write("### Recipe Details")
st.write(f"**Name:** {response['name'].capitalize()}")
st.write(f"**Preparation Time:** {response['minutes']} minutes")
st.write(f"**Description:** {response['description'].capitalize()}")
st.write(f"**Tags:** {', '.join(response['tags'])}")
st.write("### Ingredients")
st.write(", ".join([ingredient.capitalize() for ingredient in response['ingredients']]))
st.write(f"**Total Ingredients:** {response['n_ingredients']}")
st.write("### Nutrition Information (per serving)")
st.write(", ".join(response['formatted_nutrition']))
st.write(f"**Number of Steps:** {response['n_steps']}")
st.write("### Steps")
for step in response['formatted_steps']:
st.write(capitalize_after_number(step))
def display_dishes_in_grid(dishes, cols=3):
rows = len(dishes) // cols + int(len(dishes) % cols > 0)
for i in range(rows):
cols_data = dishes[i*cols:(i+1)*cols]
cols_list = st.columns(len(cols_data))
for col, dish in zip(cols_list, cols_data):
with col:
st.sidebar.write(dish.replace("_", " ").capitalize())
# #Streamlit
#Left sidebar title
st.sidebar.markdown(
"<h1 style='font-size:32px;'>RAG Recipe</h1>",
unsafe_allow_html=True
)
st.sidebar.write("Upload an image and/or enter a query to get started! Explore our trained dish types listed below for guidance.")
uploaded_image = st.sidebar.file_uploader("Choose an image:", type="jpg")
query = st.sidebar.text_area("Enter your query:", height=100)
recipe_submit = st.sidebar.button(label='Chain Recipe', icon=':material/link:', use_container_width=True)
# gap
st.sidebar.markdown("<br><br><br>", unsafe_allow_html=True)
selected_dish = st.sidebar.selectbox(
"Search for a dish that our model can classify:",
options=class_names,
index=0
)
# Right title
st.title("Welcome to FOOD CHAIN!")
with st.expander("**What is FOOD CHAIN?**"):
st.markdown(
"""
The project aims to use machine learning and computer vision techniques to analyze food images
and identify them. By using diverse datasets, the model will learn to recognize dishes based on
visual features. Our project aims to inform users about what it is they are eating, including
potential nutritional value and an AI generated response on how their dish might have been prepared.
We want users to have an easy way to figure out what their favorite foods contain, to know any
allergens in the food and to better connect to the food around them. This tool can also tell users
the calories of their dish, they can figure out the nutrients with only a few steps!
Thank you for using our project!
Made by the Classify Crew: [Contact List](https://linktr.ee/classifycrew)
"""
)
#################
# Image Classification Section
if uploaded_image and recipe_submit:
with st.expander("**Food Classification**", expanded=True, icon=':material/search_insights:'):
st.title("Results: Image Classification")
# Open the image
input_image = Image.open(uploaded_image)
# Display the image
st.image(input_image, caption="Uploaded Image.", use_container_width=True)
predictions = classifyImage(input_image)
fpredictions = ""
# Show the top predictions with percentages
st.write("Top Predictions:")
for class_name, confidence in predictions:
if int(confidence) > 0.05:
fpredictions += f"{class_name}: {confidence:.2f}%,"
if int(confidence) > 5:
class_name = class_name.replace("_", " ")
class_name = class_name.title()
st.markdown(f"*{class_name}*: {confidence:.2f}%")
print(fpredictions)
# call openai to pick the best classification result based on query
openAICall = [
SystemMessage(
content = "You are a helpful assistant that identifies the best match between classified food items and a user's request based on provided classifications and keywords."
),
HumanMessage(
content = f"""
Based on the following image classification with percentages of each food:
{fpredictions}
And the following user request:
{query}
1. If the user's query relates to any of the classified predictions (even partially or conceptually), select the most relevant dish from the predictions.
2. If the query does not align with the predictions, disregard them and suggest a dish that best matches the user's query.
3. Return in the format: [dish], just [dish] and nothing else
Example 1:
Predictions: apple pie: 50%, cherry tart: 30%, vanilla ice cream: 20%
User query: pumpkin
YOUR Response: [pumpkin pie]
Example 2:
Predictions: spaghetti: 60%, lasagna: 30%, salad: 10%
User query: pasta with layers
YOUR Response: [lasagna]
Example 3:
Predictions: sushi: 70%, sashimi: 20%, ramen: 10%
User query: noodles
YOUR Response: [ramen]
"""
),
]
# Call the OpenAI API
openAIresponse = llm.invoke(openAICall)
print("AI CALL RESPONSE: ", openAIresponse.content, "END AI CALL RESONSE")
RAGresponse = get_response(openAIresponse.content + " " + query)
print("RAGresponse: ", RAGresponse)
with st.expander("Recipe Generation", expanded=True, icon=':material/menu_book:'):
st.title('Results: RAG')
display_response(RAGresponse)
elif uploaded_image is not None:
with st.expander("**Food Classification**", expanded=True, icon=':material/search_insights:'):
st.title("Results: Image Classification")
# Open the image
input_image = Image.open(uploaded_image)
# Display the image
st.image(input_image, caption="Uploaded Image.", use_column_width=True)
# Classify the image and display the result
predictions = classifyImage(input_image)
fpredictions = ""
# Show the top predictions with percentages
st.write("Top Predictions:")
for class_name, confidence in predictions:
if int(confidence) > 0.05:
fpredictions += f"{class_name}: {confidence:.2f}%,"
if int(confidence) > 5:
class_name = class_name.replace("_", " ")
class_name = class_name.title()
st.markdown(f"*{class_name}*: {confidence:.2f}%")
print(fpredictions)
elif recipe_submit:
response = get_response(query)
print(response)
with st.expander("**Recipe Generation**", expanded=True, icon=':material/menu_book:'):
st.title("Results: RAG")
display_response(response)
else:
st.warning("Please input an image and/or a prompt.", icon=':material/no_meals:')