NDLOCR / cli /procs /page_separation.py
3v324v23's picture
Add files
c9019cd
# Copyright (c) 2022, National Diet Library, Japan
#
# This software is released under the CC BY 4.0.
# https://creativecommons.org/licenses/by/4.0/
import copy
import numpy
import os
from .base_proc import BaseInferenceProcess
class PageSeparation(BaseInferenceProcess):
"""
ノド元分割処理を実行するプロセスのクラス。
BaseInferenceProcessを継承しています。
"""
def __init__(self, cfg, pid):
"""
Parameters
----------
cfg : dict
本推論処理における設定情報です。
pid : int
実行される順序を表す数値。
"""
super().__init__(cfg, pid, '_page_sep')
if self.cfg['page_separation']['silence_tf_log']:
import logging
import warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
warnings.simplefilter(action='ignore', category=FutureWarning)
import tensorflow as tf
tf.get_logger().setLevel(logging.ERROR)
from src.separate_pages_ssd.inference_divided import divide_facing_page_with_cli, load_weightfile
load_weightfile(os.path.abspath(self.cfg['page_separation']['weight_path']))
self._run_src_inference = divide_facing_page_with_cli
def _is_valid_input(self, input_data):
"""
本クラスの推論処理における入力データのバリデーション。
Parameters
----------
input_data : dict
推論処理を実行する対象の入力データ。
Returns
-------
[変数なし] : bool
 入力データが正しければTrue, そうでなければFalseを返します。
"""
if type(input_data['img']) is not numpy.ndarray:
print('PageSeparation: input img is not numpy.ndarray')
return False
return True
def _run_process(self, input_data):
"""
推論処理の本体部分。
Parameters
----------
input_data : dict
推論処理を実行する対象の入力データ。
Returns
-------
result : dict
推論処理の結果を保持する辞書型データ。
基本的にinput_dataと同じ構造です。
"""
print('### Page Separation ###')
log_file_path = None
if self.process_dump_dir is not None:
log_file_path = os.path.join(self.process_dump_dir, self.cfg['page_separation']['log'])
inference_output = self._run_src_inference(input=input_data['img'],
input_path=input_data['img_path'],
left=self.cfg['page_separation']['left'],
right=self.cfg['page_separation']['right'],
single=self.cfg['page_separation']['single'],
ext=self.cfg['page_separation']['ext'],
quality=self.cfg['page_separation']['quality'],
short=self.cfg['page_separation']['short'],
log=log_file_path)
if (not self.cfg['page_separation']['allow_invalid_num_output']) and (not len(inference_output) in range(1, 3)):
print('ERROR: Output from page separation must be 1 or 2 pages.')
return None
# Create result to pass img_path and img data
result = []
for id, single_output_img in enumerate(inference_output):
output_data = copy.deepcopy(input_data)
output_data['img'] = single_output_img
output_data['orig_img_path'] = input_data['img_path']
# make and save separated img file name
if id == 0:
id = 'L'
else:
id = 'R'
orig_img_name = os.path.basename(input_data['img_path'])
stem, ext = os.path.splitext(orig_img_name)
output_data['img_file_name'] = stem + '_' + id + '.jpg'
result.append(output_data)
return result