3v324v23's picture
Add files
c9019cd
raw
history blame
6.92 kB
import argparse
import os
import os.path as osp
import numpy as np
import onnx
import onnxruntime as ort
import torch
from mmcv.ops import get_onnxruntime_op_path
from mmcv.tensorrt import (TRTWraper, is_tensorrt_plugin_loaded, onnx2trt,
save_trt_engine)
from mmdet.core import get_classes
from mmdet.core.export import preprocess_example_input
from mmdet.core.visualization.image import imshow_det_bboxes
def get_GiB(x: int):
"""return x GiB."""
return x * (1 << 30)
def onnx2tensorrt(onnx_file,
trt_file,
input_config,
verify=False,
show=False,
dataset='coco',
workspace_size=1,
verbose=False):
import tensorrt as trt
onnx_model = onnx.load(onnx_file)
input_shape = input_config['input_shape']
# create trt engine and wraper
opt_shape_dict = {'input': [input_shape, input_shape, input_shape]}
max_workspace_size = get_GiB(workspace_size)
trt_engine = onnx2trt(
onnx_model,
opt_shape_dict,
log_level=trt.Logger.VERBOSE if verbose else trt.Logger.ERROR,
fp16_mode=False,
max_workspace_size=max_workspace_size)
save_dir, _ = osp.split(trt_file)
if save_dir:
os.makedirs(save_dir, exist_ok=True)
save_trt_engine(trt_engine, trt_file)
print(f'Successfully created TensorRT engine: {trt_file}')
if verify:
one_img, one_meta = preprocess_example_input(input_config)
input_img_cpu = one_img.detach().cpu().numpy()
input_img_cuda = one_img.cuda()
img = one_meta['show_img']
# Get results from ONNXRuntime
ort_custom_op_path = get_onnxruntime_op_path()
session_options = ort.SessionOptions()
if osp.exists(ort_custom_op_path):
session_options.register_custom_ops_library(ort_custom_op_path)
sess = ort.InferenceSession(onnx_file, session_options)
output_names = [_.name for _ in sess.get_outputs()]
ort_outputs = sess.run(None, {
'input': input_img_cpu,
})
with_mask = len(output_names) == 3
ort_outputs = [_.squeeze(0) for _ in ort_outputs]
ort_dets, ort_labels = ort_outputs[:2]
ort_masks = ort_outputs[2] if with_mask else None
ort_shapes = [_.shape for _ in ort_outputs]
print(f'ONNX Runtime output names: {output_names}, \
output shapes: {ort_shapes}')
# Get results from TensorRT
trt_model = TRTWraper(trt_file, ['input'], output_names)
with torch.no_grad():
trt_outputs = trt_model({'input': input_img_cuda})
trt_outputs = [
trt_outputs[_].detach().cpu().numpy().squeeze(0)
for _ in output_names
]
trt_dets, trt_labels = trt_outputs[:2]
trt_shapes = [_.shape for _ in trt_outputs]
print(f'TensorRT output names: {output_names}, \
output shapes: {trt_shapes}')
trt_masks = trt_outputs[2] if with_mask else None
# Show detection outputs
if show:
CLASSES = get_classes(dataset)
score_thr = 0.35
imshow_det_bboxes(
img.copy(),
trt_dets,
trt_labels,
segms=trt_masks,
class_names=CLASSES,
score_thr=score_thr,
win_name='TensorRT')
imshow_det_bboxes(
img.copy(),
ort_dets,
ort_labels,
segms=ort_masks,
class_names=CLASSES,
score_thr=score_thr,
win_name='ONNXRuntime')
# Compare results
np.testing.assert_allclose(ort_dets, trt_dets, rtol=1e-03, atol=1e-05)
np.testing.assert_allclose(ort_labels, trt_labels)
if with_mask:
np.testing.assert_allclose(
ort_masks, trt_masks, rtol=1e-03, atol=1e-05)
print('The numerical values are the same ' +
'between ONNXRuntime and TensorRT')
def parse_args():
parser = argparse.ArgumentParser(
description='Convert MMDetection models from ONNX to TensorRT')
parser.add_argument('model', help='Filename of input ONNX model')
parser.add_argument(
'--trt-file',
type=str,
default='tmp.trt',
help='Filename of output TensorRT engine')
parser.add_argument(
'--input-img', type=str, default='', help='Image for test')
parser.add_argument(
'--show', action='store_true', help='Whether to show output results')
parser.add_argument(
'--dataset', type=str, default='coco', help='Dataset name')
parser.add_argument(
'--verify',
action='store_true',
help='Verify the outputs of ONNXRuntime and TensorRT')
parser.add_argument(
'--verbose',
action='store_true',
help='Whether to verbose logging messages while creating \
TensorRT engine. Defaults to False.')
parser.add_argument(
'--to-rgb',
action='store_false',
help='Feed model with RGB or BGR image. Default is RGB.')
parser.add_argument(
'--shape',
type=int,
nargs='+',
default=[400, 600],
help='Input size of the model')
parser.add_argument(
'--mean',
type=float,
nargs='+',
default=[123.675, 116.28, 103.53],
help='Mean value used for preprocess input data')
parser.add_argument(
'--std',
type=float,
nargs='+',
default=[58.395, 57.12, 57.375],
help='Variance value used for preprocess input data')
parser.add_argument(
'--workspace-size',
type=int,
default=1,
help='Max workspace size in GiB')
args = parser.parse_args()
return args
if __name__ == '__main__':
assert is_tensorrt_plugin_loaded(), 'TensorRT plugin should be compiled.'
args = parse_args()
if not args.input_img:
args.input_img = osp.join(osp.dirname(__file__), '../demo/demo.jpg')
if len(args.shape) == 1:
input_shape = (1, 3, args.shape[0], args.shape[0])
elif len(args.shape) == 2:
input_shape = (1, 3) + tuple(args.shape)
else:
raise ValueError('invalid input shape')
assert len(args.mean) == 3
assert len(args.std) == 3
normalize_cfg = {'mean': args.mean, 'std': args.std, 'to_rgb': args.to_rgb}
input_config = {
'input_shape': input_shape,
'input_path': args.input_img,
'normalize_cfg': normalize_cfg
}
# Create TensorRT engine
onnx2tensorrt(
args.model,
args.trt_file,
input_config,
verify=args.verify,
show=args.show,
dataset=args.dataset,
workspace_size=args.workspace_size,
verbose=args.verbose)